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Summary 

Shortest-path algorithm has been used widely to calculate 
first arrival traveltimes and ray paths. It assumes that the 
velocity in each model cell is constant. When the velocity 
field varies continuously, models using too few constant-
velocity cells will result in too much error, and models using 
too many constant-velocity cells will be inefficient. We made 
an improvement to this problem by allowing velocity 
increases linearly with depth at each model location. This 
improvement leads to a more accurate and faster ray tracing, 
and incorporates fewer model parameters for tomographic 
inversion at places of continuous velocity variation. The 
improved method is shown using 2D and 3D ray tracing 
examples. 

Introduction 

Calculations of traveltimes and ray paths are important in 
migration, tomography, and modeling. One of the widely 
used ray tracing methods is the shortest-path calculation 
introduced by Moser (1991). This algorithm assumes that 
velocity in each cell is constant. However, in the subsurface 
of real earth, velocity usually changes in the vertical direction 
with consequent lithological changes and increasing pressure 
with increasing depth. Among different relationship between 
velocity and depth, velocity increasing linearly with depth is 
of considerable practical importance, and the value of the 
velocity gradient is generally between 0.3/s and 1.3/s (Sheriff 
and Geldart, 1995). The typical velocity gradient found in the 
Gulf of Mexico is 0.5/s (Biondi, 2006). Large velocity 
gradient is likely present within near-surface materials and 
near the water table in unconsolidated material (Birkelo et al., 
1987; Miller and Xia, 1997, 1998). Ettrich (2002) shows that 
using a constant velocity gradient may approximate the real 
velocity field much better than using constant velocities.  

If we use shortest-path algorithm to model the subsurface 
where velocity varies continuously, the assumption of 
constant velocity in each cell cannot be effective. Using few 
cells, the error will be large. For increasing the accuracy, 
many constant-velocity cells are needed to approximate, 
which means a huge increase of computation expense, and 
the efficiency is always an evergreen issue. During the last 
several years, some modifications and improvements to 
shortest path algorithm for efficiency have been done by 
some researchers (Fischer and Lees, 1993; Urdanera and 
Biondi, 2001; Van Avendonk et al, 2001; Zhang and Li, 2005; 
Bai et al, 2007).  

We developed a technique that incorporates velocity gradient 
into each cell, which means we don’t need so many cells to 
model the subsurface with velocity gradient. 

Method 

It is well known that the ray path will be a part of a circle if 
the velocity gradient is constant, in other words, the ray will 
be circular if velocities increase linearly with depth (Slotnick, 
1959). Sheriff and Geldart (1995) also give a very clear 
description about this. Figure 1 shows this idea in 2D case. 
Green area illustrates geological subsurface. The red curve is 
a ray leaving a source (red solid dot) at the angle i0 to a 
receiver (blue triangle) and the center of this circular ray is O. 
The height of this center above the geologic surface is v/a, 
where v is the velocity at the surface and a is the velocity 
gradient. Because this height is independent of i0, the centers 
of all circular rays lie on the same horizontal line -- the top 
horizontal red dashed line in Figure 1. This line is located 
where the velocity would be zero if the velocity function 
were extrapolated up into the air (Sheriff and Geldart, 1995). 
We call this line ‘centers line’ which will be used by 
following figures (Figure 2, 3, and 4). This important result 
makes it easier for us to take the velocity gradient into real 
applications. 

 

Figure 1: Green area illustrates geological subsurface. The 
red curve is a ray path from a source (red solid dot) to a 
receiver (blue triangle). If velocity gradient is constant, the 
ray path is a part of a circle centered at O. The height of this 
center above the surface is v/a, where v is the velocity at the 
surface and a is the velocity gradient. i0 is the incidence angle 
of the ray and is used to calculate the ray parameter. 
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Improved shortest-path ray tracing 

Given the velocity at surface and velocity gradient, the 
traveltime from one reference point (such as the red solid dot 
in Figure 1) at surface to another point at depth (such as the 
yellow solid dot in Figure 1) can be calculated directly by 
Equation 1 introduced by Slotnick (1959). 

2 2

2 2

1+ 1-p v1 v+azt(v,a)= ln( )
a v 1+ 1-p (v+az)                   (1)

 

where, v is the velocity at surface; a is the velocity gradient; z 
is the depth from surface; p is the ray parameter of the ray.  

If the traveltime between any two points (such as the yellow 
dot and the black dot in Figure 1) in subsurface is to be 
calculated, then Equation 1 can be used to calculate the 
traveltime T1 between the red point (reference point) to the 
yellow point, and traveltime T2 between the red point to the 
black point respectively, and then the difference (T2-T1) is the 
traveltime from the yellow dot to the black dot. Based on this, 
we can calculate the traveltime between any two arbitrary 
points having the same surface velocity and subsurface 
gradient. 

In the traditional model parameterization, each cell has a 
constant velocity value. The traveltime between two arbitrary 
nodes is calculated by multiplying the slowness value 
(inverse of velocity) with the length of the straight ray 
between the two nodes.  

In our method, the ray path is not a straight line anymore in 
each cell. Figure 2 is an illustration of how we calculate the 
travetime and ray path. The black rectangle is the model cell 
used in shortest path calculation. The velocities are recorded 
at the four corners of the cells. The top horizontal red dashed 
line is what we called ‘centers line’ in Figure 1. The second 
red dashed line is considered as the geological surface with 
surface velocity VT and the bottom red dashed line is the 
bottom of the subsurface with velocity VB. VT is defined as 
the average of the velocities of the top two corners. VB is 
defined as the average of the velocities of the bottom two 
corners. Given any two arbitrary nodes (Node 1 and Node 2) 
on the boundary of the cell, the midpoint M is got. Then draw 
a perpendicular line passing M, and this line will cross the top 
red dashed line (so-called ‘centers line’). The crossing point 
O is got, which is the center of the circular ray between Node 
1 and Node 2. Then an arc from node 1 to node 2 can be 
drawn (red curve) and this arc is the ray path. i0 and surface 
velocity VT will be used for calculating ray parameter, which 
is p= sin(i0) / VT. Velocity gradient of this cell is defined by 
(VB-VT )/ h. Traveltime is calculated using Equation 1. 

In real earth, layer interfaces often have lateral variations. For 
modeling such kind of interfaces, we may let the top and 
bottom boundaries be dipping, shown in Figure 3. This time 
the cell is a trapezoidal. This figure is similar to Figure 2, and 
the only difference is that we define the average depth of top 
two corners as geological surface (second horizontal red 

dashed line) and the average depth  of bottom two corners as 
bottom of subsurface (bottom red dashed line). Velocity 
gradient of this cell is defined by (VB-VT)/h. Then the 
traveltime and ray path can be calculated with the same 
method shown in Figure 2. 

 

Figure 2: 2D illustration of calculating traveltimes and ray 
paths in each model cell with flat top and bottom boundaries. 
Red curve is ray path. Traveltime between Node 1 and Node 
2 is calculated using Equation (1). 

 

Figure 3: 2D illustration of calculating traveltimes and ray 
paths in each model cell with dipping top and bottom 
boundaries. Red curve is ray path. Traveltime between Node 
1 and Node 2 is calculated using Equation (1). 

For 3D cases (Figure 4), the illustration of how a velocity 
gradient is defined in a triangular prism is similar to 2D cases. 
Nodes for shortest-path algorithm are defined on the five 
surfaces of the triangular prism. All the ray paths between 
two arbitrary nodes will be circular and all the centers of 
these circular rays are in the same surface -- the top red 
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Improved shortest-path ray tracing 

surface. Also similar to the 2D cases shown in Figure 3, 
because the layer interfaces have undulations, the top and 
bottom surfaces of the prism are often defined as not parallel 
with each other. Like the two red lines where the VT and VB 
are defined in Figure 3, there are two surfaces with velocities 
of VT and VB are shown in Figure 4. Velocity gradient for the 
whole prism will be (VB-VT)/h. Then the traveltimes and ray 
paths can be calculated by the same method of 2D cases. 

 

Figure 4: 3D illustration of triangular prisms with dipping top 
and bottom surfaces used in the 3D ray tracing algorithm. 

An example comparing computation time and accuracy 

This example made a test of ray tracing using our method and 
traditional shortest-path algorithm to compare computation 
time and accuracy. For comparing easily, a simple model 
(Figure 5a) is used here. It is 1000 m long and 500 m deep. 
The velocity is 500m/s at the surface and 1500m/s at the 
bottom. This means there is a velocity gradient. Different 
color shows different velocities (see color bar at bottom of 
Figure 5). The source (pink circle) is at (0.0, 0.0) and the 
receiver (blue triangle) is located at (1000.0, 0.0). Red curve 
is the first arrival ray path. 

Figure 5b is a five-layer model with constant layer velocities 
(600, 800, 1000, 1200, 1400 m/s) chosen to best fit the 
velocity gradient in Figure 5a. Figure 5c is a ten-layer model 
with constant layer velocities (550, 650, 750, 850, 950, 1050, 
1150, 1250, 1350, 1450 m/s) chosen to best fit the velocity 
gradient in Figure 5a.  The 1D velocity profile is shown on 
the right side of each model. 

Table 1 compiled the computation times and errors calculated 
by ray tracing in the three models shown in Figure 5. From 
this table, we can see that our method calculates the 
traveltime analytically without any approximation in this case. 
The computation time is less than 0.1 s because, in this case, 
the model using our method only needs 1 cell. This table also 
tells us that, to make the error smaller than 10ms which is 
usually the noise level for offset of 1000m, many layers are 
needed. However, the computation expense will increase. 

 

Figure 5: (a) A single-layer model with a constant velocity 
gradient. (b) A five-layer model with constant layer velocities 
(600, 800, 1000, 1200, 1400 m/s) chosen to best fit the 
velocity gradient in (a). (c) A ten-layer model with constant 
layer velocities (550, 650, 750, 850, 950, 1050, 1150, 1250, 
1350, 1450 m/s) chosen to best fit the velocity gradient in (a). 
The red curve in each panel denotes the ray path. 

Model Time Error 

Constant velocity gradient < 0.1 s 0.00 ms 

5-layer constant-velocity 3.9 s 26.93 ms 

10-layer constant-velocity 7.1 s 8.96 ms 

Table 1: Comparison of computation time and accuracy of 
the models shown in Figure 4. 

500        Velocity [m/s]          1500 

0             Distance [m]           1000 

0     D
epth [m

]      500 

(c) 

v 

z 

0     D
epth [m

]      500 
(b) 

v 

z 
0     D

epth [m
]      500 

(a) 

v 

z 

2599SEG Houston 2009 International Exposition and Annual Meeting

D
ow

nl
oa

de
d 

03
/1

8/
14

 to
 3

4.
25

4.
11

9.
22

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Improved shortest-path ray tracing 

A 2D ray tracing example 

A 2D ray tracing example using our method is shown here. 
The 1D velocity-depth profile in Figure 6a is at the location 
denoted by the red arrow in Figure 6b. There are two sources 
(pink circles) and 26 receivers (blue triangles) at or near 
surface. Red curve is the ray path from the first source to all 
receivers. Green curve is the ray path from the second source 
to all receivers. 

 

Figure 6: A test of our method for tracing rays in a velocity 
model with gradient. (a) 1D velocity profile at the location 
denoted by the red arrow in (b). (b) Ray tracing in the 
velocity model. There are two sources (pink circles) and 26 
receivers (blue triangles). Red curve is the ray path from the 
first source to all receivers. Green curve is the ray path from 
the second source to all receivers.  

A 3D VSP ray tracing example 

A 3D ray tracing example is shown in Figure 7, which is an 
application of the method shown in Figure 4. The survey 
setup is the same as the real one already done at Vinton Salt 
Dome, located in the southwestern corner of Louisiana, 200 
km east of Houston, and has been discovered more than 100 
years. Some primary reservoirs are found near the crest of the 
dome which is also the location of the drilled well for this 
VSP survey. The red stars are the sources, and the 11 blue 
triangles are one subset of all the receivers in the well (The 

total number of receivers is about 60). Zhou (2006) gives 
much more details about this project and his tomographic 
inversion results. There are also some well log data at that 
area, and those data shows that there are two layers in large 
scale and, within each, there are prominent velocity gradients. 
So, in this ray tracing example, two layers with different 
gradients are shown. It will be interesting to use our new 
method to apply to the tomographic inversion and compare 
the result with the constant-velocity method in previous work. 

 

Figure 7: 3D VSP Ray tracing example. Red curves are ray 
paths. The red stars are the sources, and the blue triangles are 
the receivers. Rays drawn are from all sources to one of the 
receivers.  

Discussion and conclusions 

Traditional shortest-path algorithms for ray tracing assume 
constant velocity in each model cell. When the velocity field 
varies continuously, it will be erroneous to approximate it 
using few constant-velocity cells. On the other hand, using 
many constant-velocity cells will lead to more model 
parameters that will be harmful to ray tracing computation 
and inversion. The truth is that velocity gradient exists widely 
in the real world. Our improved method introduces a linear 
velocity increase with depth at each model location. Tests of 
the new method indicated improvement in both solution 
accuracy and computation efficiency. Our method uses fewer 
model parameters, hence it is more suitable for tomographic 
inversion because the solutions will be more robust for fewer 
unknowns. 

There are still limitations for our method. In the presence of 
large undulation of the layer interfaces, the approximation 
shown in Figures 3 and 4 will require to use more model 
columns in order to constrain the numerical error. However, 
this error will be much smaller than that of using constant-
velocity cells. 
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