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ABSTRACT 

 

Seismic anisotropy, the variation of the speed of seismic waves as a function of 

traveling direction, could be caused by alignments of mineral crystals, fractures, and 

thin layers of alternative velocities. While most of the current velocity analysis 

algorithms assume the subsurface be isotropic, in the presence of seismic anisotropy, a 

proper treatment of seismic anisotropy when it presents will avoid the corresponding 

error in seismic imageries and provide estimates of the anisotropic structure that might 

be indicative of lithology and/or the existence of fractures.  

 

In this study, two anisotropic processing algorithms in depth domain are developed to 

estimate the degree of velocity anisotropy of multi-layer transversely isotropic media 

with vertical symmetry axis (VTI) or tilted symmetry axis (TTI), and to image the 

complex subsurface structure. The work primarily involves examining and estimating 

anisotropic parameters of layered media using first arrival traveltime tomography, and 

analyzing the influence of anisotropic parameters on the quality of prestack migration. 

The multi-layered model consists of several thickness-varying layers and the 

anisotropic parameters are constant for each layer. For each model layer the inversion 

variables consist of the anisotropic parameters ε and δ, the tilted angle φ of their 

symmetry axis, layer velocity along the symmetry axes, and thickness variation of the 

layer. An inversion program was developed to recover several combinations of 

anisotropic parameters for depth migration.  

 

Inverting for all anisotropic parameters together will make results nonuniqueness, 

searching for a practical strategy for anisotropic estimation becomes necessary. I 

evaluate the effects of error in some of the model parameters on the inverted values of 

the other parameters. The analyses show, for instance, the errors in the layer symmetry 

axes sensitively affect the inverted values of other parameters, especially δ. However, 
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the impact of errors in δ on the inversion of other parameters is much less than the 

impact on δ from the errors in other parameters in crosswell acquisition geometry. 

Hence, the practical strategy is chosen for different acquisition geometry. In crosswell 

acquisition geometry, inverting for the most error-tolerant parameters such as layer 

velocity and ε, and assume constant values for δ. In VSP acquisition geometry, axial 

velocity and δ could be firstly resolved, when VSP provides large offset, inverting for 

ε becomes feasible.    

 

By analyzing the anisotropic velocity model, prestack reverse time migration (RTM) 

algorithm in VTI/TTI media has been applied. RTM propagates the source wavefield 

forward and receiver wavefield backward in time using acoustic two-way wave 

equation. RTM has been extended from isotropic media to VTI/TTI media. Explicit 

finite difference scheme and pseudo-acoustic wave approximation for TI media by 

simply setting shear velocity as zero are applied for VTI/TTI RTM. By analyzing the 

effects of each anisotropic parameter on the imaging result of reverse time migration, 

the importance of each anisotropic parameter for seismic migration is discussed.  
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CHAPTER 1: INTRODUCTION 

                            

1.1 HISTORY OF SEISMIC ANISOTROPY 

 

Seismic anisotropy, the variation of the speed of seismic waves as a function of 

traveling direction, could be caused by alignments of mineral crystals, fractures, and 

thin layers of alternative velocities (Figure 1-1). Most of the current velocity analysis 

algorithms assume the subsurface be isotropic. This assumption greatly simplifies the 

mathematical treatments and is acceptable for most applications. However, anisotropy 

of physical properties is part of nature. In the presence of significant level of seismic 

anisotropy, a proper treatment of seismic anisotropy will be necessary in seismic 

imaging and estimating the anisotropic structure that might be indicative of lithology 

and/or the existence of fractures.  

 

                          

             Figure 1-1: Alternative thin layers may result in anisotropic structure.    

 

Laboratory studies of rock samples show that many mineral exhibits anisotropic 

elastic properties, such as Olivine (Figure 1-2). Olivine is a major constituent of the 

Earth’s upper mantle. It contributes more than half of the upper mantle materials. 
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Olivine material can has large anisotropic effect up to 25% of compressional wave 

velocity anisotropy. The foliated rocks, such as gneisses, in which mineral alignments 

have been produced by the metamorphic effects of pressure and temperature, are also 

expressed as anisotropic property. Another possibility of forming anisotropy is that 

shape-induced anisotropy at large wavelengths for layered media or distribution of 

cracks with a preferred orientation, or layered-induced anisotropy. 

 

                          

        Figure 1-2: Olivine displays anisotropic effect intrinsically. (Zhou, class notes)  

 

However, direct evidence of seismic anisotropy is indeed difficult to observe. 

Observations from different types of seismic wave sampling the Earth’s interior from 

the crust to the inner core. The elastic anisotropy as observed by seismic wave is 

different with the intrinsic anisotropy observed in a pure mineral during laboratory 

experiment. The term, seismic anisotropy, is used to illustrate for anisotropic 

properties on the scale of wavelength, as opposed to microscopic anisotropy which 

related to the individual crystals or rock samples. The hidden anisotropy in the Earth 

may be important when fine details of the Earth’s structure need to be investigated, 

such as targeting the reservoir location. In terms of exploration seismology, without 

considering anisotropy, it will result in erroneous imaging of subsurface strata, and the 

reflection point could be imaged away from its true location. 
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Therefore, many situations which significant anisotropy occurs need to be attempt to 

understand and treat it mathematically are increasingly common. When sedimentation 

and tectonic processes produce dip and thickness variations in rock layers, the velocity 

structures is approximated as the tilted transverse isotropy, or TTI media. For 

sedimentary strata with a short depositional history the symmetry axis is assumed to 

be vertical, and for old strata that have undergone deformation the symmetry axes 

trend to be normal to bedding (e.g.: Hornby et al., 1994; Sayers, 2005). In thrust belts 

like that in the Canadian foothills (Charles et al., 2008), reservoirs are overlain by 

thick sequences of dipping sandstone and shale layers which generate a tilted 

symmetry axis which varies with the layer geometry. The tilted angle of the symmetry 

axis makes it more challenging to estimate the model parameters for the TTI media 

than that for the VTI (vertical transverse isotropy) media or the HTI (horizontal 

transverse isotropy) media  (Figure 1-3).  

 

                                     

x

z

TI with vertical axis (VTI)

(a)

x

z

TI with vertical axis (VTI)

x

z

TI with vertical axis (VTI)

(a)
 

                                     

x

z

x

z

TI with horizontal axis (HTI)

(b)  
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x

z

TI with tilted axis (TTI)

(c)

 

Figure 1-3: Three different types of anisotropic structure. (a) VTI media; (b) HTI 

media; (c) TTI media. 

 

Explicit estimations of velocity anisotropy are not commonly incorporated into 

seismic imaging process, largely due to the difficulty in estimating the orientation and 

magnitude of the anisotropy in depth models. However, parameter estimation in 

transversely isotropic media has attracted considerable attention in recent years, 

mostly in time domain analysis by surface reflection data (Alkhalifah and Tsvankin, 

1995). A common approach is based on non-hyperbolic NMO type analysis. The layer 

stripping process using the Dix formula has been shown as a feasible tool for time 

domain anisotropic analysis (Alkhalifah and Tsvankin, 1995). For a transverse 

isotropic model with vertical axis, the P-wave velocity is controlled by the axial 

velocity Vp0 and the anisotropic parameters ε and δ (Thomsen, 1986). Alkhalifah and 

Tsvankin (1995) illustrated that only two parameters, the NMO velocity from a 

horizontal reflector and the anellipticity coefficient η, can be used for anisotropic 

analysis if the medium above the reflector is laterally homogeneous. Hence, 

semblance has been considered as an effective tool to define stacking velocity 

(Alkhalifah, 1997). The semblance coefficient is defined as the ratio of the output 

energy over a window of a stack of traces to the input energy in the unstacked traces. 
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Estimating the semblance velocity is based on summing data over hyperbolic 

trajectories controlled by the trial moveout velocity. Kumar (2008) proposed a 

common-focus point domain analysis for anisotropic parameter estimation. In this 

domain, errors in imaging are seen as non-zero differential time shifts, the estimate of 

anisotropic parameters ε and δ is obtained using least-square solutions of Newton’s 

equation that make the differential time shifts zero.  

  

One of the conclusions that can be drawn from the literature is that in building models 

in depth domain surface reflection P-wave data are insufficient to constrain the 

anisotropic velocity and the reflector depth. One reason is that time domain processes 

are based on layer stripping approach with the Dix formula. It will result in instability 

due to the accumulation of errors during the procedure. It is still a bottleneck to 

reconstruct anisotropic models in depth domain for prestack migration using the time 

domain analyses. On the other hand, seismic tomography is a promising approach to 

estimate the distributions of anisotropic parameters in depth domain (Chapman and 

Pratt, 1992). Watanabe et al. (1996) presented a seismic traveltime tomography 

approach to estimate anisotropic slowness and orientation simultaneously in 

anisotropic heterogeneous media. Kumar et al. (2004) proposed a ray-based method to 

calculate TTI traveltime that relies on the computations of group velocity from 

neighboring eight points.  Zhou et al. (2008) proposed a nonlinear kinematic inversion 

method for crosswell seismic tomography in composite transversely isotropic media 

with known dipping symmetry axis. Charles et al. (2008) evaluated how velocity and 

anisotropy mode-building strategies affect seismic imaging in the Canadian Foothills 

by comparing the results of a model-driven approach with a data-driven approach. 

Some studies showed that fault plane reflection energy that intersects sedimentary 

reflectors may be helpful to estimate anisotropic parameters (Ball, 1995). However, 

these studies show that reliable estimates of layered anisotropic parameters in model 

space are difficult even when the tilted symmetry axis is known. To reliably estimate δ, 

for instance, the well control is needed. Large offsets are required to extract ε. A major 
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challenge is to determine the depth variation of velocity interfaces and anisotropy-

induced discrepancy together, especially if only first arrivals are available. 

Simplifications like models with planar interface or fixed interface geometry have 

been implemented to constrain the inversion processes.  

 

Considering the varying ability to invert for different model parameters, in this 

dissertation, I search for ways to invert only for some of the variables in such layered 

TTI models while fixing the other variables using their default values. By applying the 

layered tomography method to a series of simple synthetic models, we analyze the 

impacts of errors in some of the model parameters on the sensitivities of the other 

parameters. Several experiments suggest that in crosswell acquisition geometry, axial 

velocity and ε should be considered for priority inversion variables, and consider δ as 

further inversion parameter when data coverage is sufficient. However, in VSP 

acquisition geometry, because most raypaths spread around 45°, δ can be considered 

as priority inversion parameter as well as axial velocity. 

 

Depth domain anisotropic processing can be divided into two categories: The 

Estimation of Anisotropic Parameters and Anisotropic Depth Migration. In this study, 

Deformable Layer Tomography (Zhou, 2006) has been extended to consider 

anisotropy effect using first arrivals. The new anisotropic traveltime tomography can 

construct the five important anisotropic parameters in depth model: the anisotropic 

parameters ε and δ, the tilted angle φ of the symmetry axis, layer velocity along the 

symmetry axis, and thickness variation of the layer. Each anisotropic parameter 

expresses the presence of velocity variation and can investigate the property of 

subsurface strata. However, inverting for all anisotropic parameters together will result 

in nonuniqueness and underdeterminacy to make result unstable. To address those 

challenges, a practice strategy has been developed with the evaluation the effects of 

error in some of the model parameters on the inverted values of the other parameters. 

The analyses show, for example, that the error in the layer symmetry axis significantly 
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degrades the inverted values of other parameters, especially on δ. However, the impact 

of the error in δ on the inversion of other parameters is much less than the impact on δ 

from the error in other parameters. Hence, a practical strategy is first to invert for the 

most error-tolerant parameters such as layer velocity and ε, and assume zero values for 

δ. More model parameters can be included in further inversions if they can be resolved 

by the given data coverage. δ should be the last inversion parameter to be considered 

in the anisotropic velocity model building.  

 

Anisotropic tomography can provide accurate velocity model, which is required for 

depth migration. Reverse time migration (RTM) has been successfully applied to 

produce high-quality images in recent years. It propagates source wavefield forward in 

time and the receiver wavefield backward to image the subsurface reflector (e.g., 

Baysal et al, 1983; McMechan, 1983; Whitmore, 1983). By using the two-way 

acoustic wave equation, RTM has no dip limitation. Also, it naturally takes into 

account both down-going and up-going waves and thus enables imaging of the turning 

waves and prism waves that are able to enhance the image of steep salt flank and other 

steeply dipping events with complex structures. In this dissertation, the influence of 

different anisotropic parameters on RTM image is analyzed and discussed.  

 

1.2 SUMMARY OF DISSERTATION 

 

Chapter 2 introduces forward modeling algorithms in layered TTI media. Two 

different forward modeling approaches have been discussed: anisotropic ray tracing 

and anisotropic finite difference modeling. In the parameter setup of anisotropic ray 

tracing, each thickness-varying layer consists of constant anisotropic parameter ε and 

δ, axial velocity and tilted angle of symmetry axis. To compare with the accuracy of 

anisotropic ray tracing, a pseudo acoustic two-way wave equation is applied to 

generate waveform data and first arrivals. The application of finite difference, pseudo-
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spectral, and hybrid algorithms can be applied to solve the equations. However, the 

experiments indicates that only finite difference give less computation cost than others 

and should be considered as default propagator for waveform modeling. The first 

arrival comparison between anisotropic ray tracing and waveform modeling shows 

that anisotropic ray tracing can generate good quality of traveltime data as good as 

waveform modeling, but less computation time. It can be considered as preferred 

forward modeling algorithm for traveltime tomography. 

 

Chapter 3 introduces P-wave traveltime tomography in layered TTI media. After 

generating TTI kernels by anisotropic traveltime equation, the inversion scheme can 

be extended from isotropic to anisotropic approach. Several 2D and 3D numerical 

experiments show the feasibility of anisotropic layered tomography and illustrate that 

several combinations of anisotropic parameters indeed can be inverted even traveltime 

data containing 5% Gauss noise.  

 

Chapter 4 discusses an error analysis of each model parameters on other parameters in 

terms of inversion quality. Considering the varying ability to invert for different model 

parameters, searching for ways to invert only for some of the variables in such layered 

TTI models is needed while fixing the other variables using their default values. By 

applying the new tomography method to a series of simple synthetic models, the 

analysis describes the impacts of error in some of the model parameters on the 

inversion quality of the other parameters. This has led to a strategy to first invert for 

layer velocity and ε, and to consider δ as the last inversion parameter only when data 

coverage is sufficient. 

 

Chapter 5 analyzes the imaging errors by different assumptions of anisotropic 

parameters on the image quality of reverse time migration. Anisotropic parameter ε 

represents the velocity differences between horizontal direction and vertical direction, 



 

                                                                    9 

ignoring it will simplify anisotropic media as pseudo-isotropic media. The quality of 

images will be significantly degraded when ignoring ε. Parameter δ represents that 

how much wave propagation deviates from vertical direction. The experiments show 

that δ brings less influence on migration results than ε. The tilted symmetry axis 

controls the fast direction of wave propagations, ignoring tilted angle will result in 

errors of the depth and dipping angle of subsurface strata, especially on steeply 

dipping reflector.  

 

Chapter 6 concludes the innovation and creativity of this dissertation that an 

anisotropic layered traveltime tomography is developed for velocity model building 

and the effect of different anisotropic parameters on the images by reverse time 

migration  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

                                                                    10 

 

CHAPTER 2: FORWARD MODELING IN VTI/TTI MEDIA 

 

2.1 INTRODUCTION 

 

The propagation of seismic body waves in complex anisotropic structures is a 

complicated process. The common approaches can be investigated by methods based 

on approximation of high-frequency asymptotic methods, such as ray approach, or 

direct numerical solution of wave equation, such as finite difference method. Both 

methods have their own advantages and disadvantages, based on different objectives, a 

proper method need to be chosen to collaborate with future application. 

 

To calculate raypath traveltime in anisotropic media, ray tracing has been shown as an 

efficient approach (e.g.: Cerveny, 1972; Klimes and Kvasnicka, 1994; Zhou and 

Greenhalgh, 2005).  There are two traditional methods to computer seismic raypaths 

between two local points: shooting and bending (Cerveny, 2001). The shooting 

method is based on iterative application of an initial value ray tracing algorithm. This 

method tries to find raypaths leaving one source point by solving the differential 

equations until the trial ray arrives at the predefined point. Rays are specified uniquely 

by the ray take-off parameters. The drawbacks of this method are its convergence 

problem, especially in 3D area, and can not find ray diffracted raypaths in shadow 

zones where ray theory breaks down. Another method, bending method, considers 

Fermat’s principle as a starting point. It tries to find a ray path between two points by 

searching the minimum traveltime between them. Bending method can generate the 

traveltime of diffracted ray, even when the destination point is in velocity shadow 

zone. However, bending method is good only for one source-receiver pair at a time 
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and it is not certain whether the path has an absolute minimal traveltime or only a 

local minimal traveltime (Moser, 1992). 

 

By applying network theory and shortest paths in networks after Nakanishi and 

Yamaguchi (1986), Moser (1991) proposed a new ray tracing method to avoid the 

disadvantages of shooting and bending. Moser’s method, named shortest path method, 

is good to construct all shortest paths from one point at same time. It can be applied to 

the simulation of common-shot point gathers without missing any receivers in a 

complex geological structure.  

 

To encounter seismic anisotropy in the propagation of seismic waves, great 

achievements have been made in theoretical analysis and numerical modeling. 

Cerveny and Firbas (1984) demonstrated a linearized approach to traveltime 

computation for a general anisotropic medium. The linearization procedure can be 

applied to inhomogeneous, slightly anisotropic media to solve direct and inverse 

kinematic problems. Shearer and Chapman (1988) gave the solutions of the raypath 

and traveltime in a linear gradient anisotropic medium. Their method can approach the 

kinematic property of a cell in general anisotropic media by using a target-shooting 

scheme, which traces a ray with a trial of the phase slowness direction.    

 

Recently, many researchers are interested in anisotropic ray tracing but focusing on 

VTI media for two reasons. The first reason is that VTI is a good simplification of the 

structure of minerals in sedimentary rock such as shale to the hexagonal crystals. 

Some ordering in the structure of rocks, such as fine-layering and parallel cracked, has 

similar properties with VTI medium (Crampin, 1984). The second reason is that VTI 

medium provides simplification of mathematical calculation for wave propagation. 

Ruger and Alkhalifah (1996) developed an efficient 2D ray tracing algorithm based on 

the simplified version of the eigenvectors in a VTI medium. Cardarelli and Cerreto 
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(2002) proposed a ray tracing method in elliptical anisotropic media by the 

interpolation of linear traveltime. To improve the efficiency of Moser’s shortest path 

ray tracing method in anisotropic medium, Zhou and Greenhalgh (2005) proposed a 

method for seismic ray tracing by extending Moser’s SPM in a general anisotropic 

medium. They showed that the anisotropy may be defined by up to 21 density-

normalized elastic moduli which vary with spatial position. They apply analytical 

solutions of the wave velocities for a general anisotropic medium as a “transform” or 

“mapping” operator to convert the elastic-moduli-described medium into the direction-

dependent group-velocity models for the three independent wave modes (qP, qSV, 

qSH).   

 

Alternatively, anisotropic acoustic waveform modeling has become a popular way to 

calculate traveltime and default forward modeling for seismic migration. The primary 

drawback of the elastic assumption about the Earth’s subsurface is that it ignores the 

inelastic nature of the earth. Elastic assumption also requires the dynamic computation 

of all three components of the wavefield, resulting in an expensive computational 

process. To reduce the computation cost, the media with acoustic assumption is used 

to simulate only P-wave propagation. The wavefield in the acoustic media can be 

described by a scalar factor other than a vector. The main difference between elastic 

and acoustic medium is that in elastic medium, the P-wave energy will transform to S-

wave energy when encountering an interface but in acoustic medium, all the P-wave 

energy is conserved. 

 

The acoustic wave equation can be used for zero-offset and nonzero-offset modeling 

of P-waves. There is no need to separate P-wave and S-wave which can save much 

computational time. Alkhalifah (1998, 2000) started from dispersion relation and 

proposed a pseudo-acoustic approximation wave equation in TI media by setting shear 

wave velocity along the symmetry axis as zero. Based on Alkhalifah’s pseudo-acoustic 



 

                                                                    13 

approximation, a number of variations of pseudo-acoustic wave equation have been 

developed to account for the vertical TI (VTI) media (Zhou et al., 2006a; Hestholm, 

2007; Du et al., 2008). Assuming the symmetry axis is normal to the bedding and 

tilting the symmetry axis accordingly, extensions from VTI to TTI have been 

developed (Zhou et al., 2006b; Fletcher et al., 2009; Zhang and Zhang, 2009).  

 

In this chapter, by extending Sena’s (1991) anisotropic traveltime equation to TTI 

media and compared with anisotropic waveform modeling in terms of picked first 

arrivals, shortest path ray tracing can be proved as effective approach for calculating 

traveltime data in 2D/3D TTI media. The calculated fist arrivals from ray tracing can 

be used for traveltime tomography for anisotropic parameter estimations.     

 

2.2 METHODOLOGY OF ANISOTROPIC FORWARD MODELING 

 

2.2.1 Traveltime equation in VTI/TTI media 

 

A basic feature of wave propagation in anisotropic media is that the propagated 

direction of the ray velocity generally differs from that of the wave-front velocity, or 

phase velocity (Figure 1).  The wavefront is perpendicular to the propagation vector k 

because the direction of the propagation of the phase is along the vector k.  Apparently 

the wave-front is non-spherical.  It is different from ray angle θ which is the angle 

from the source point to the wavefront.  In the other way, the group (ray) velocity is 

determined by the velocity of energy propagation. In inhomogeneous transversely 

isotropic media, the group velocity is used to determine the ray angle that the raypath 

will travel (Slawinski et al., 2000). 
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Figure 2-1: Phase angle ( )φ and group angle (θ). 

 
 

To determine the phase velocity as well as group velocity, many researchers derived 

anisotropic traveltime equation based on different assumptions. Expression for the P-

wave phase velocity has been obtained by Thomsen (1986) under the weak anisotropy 

approximation: 

 

( )2 2 4

p p
V ( )=V (0) 1+δsin cos +εsinφ φ φ φ                                                                    (2-1) 

 

Where 
p

V ( )φ is phase velocity at incident angle φ , 
p

V (0)  is vertical velocity, ε and δ 

are anisotropic parameters. 

 

The above equation is obtained by extending the exact expressions of the phase 

velocity in a Taylor series in the small parameters ε and δ at fixed φ , retaining only 

linear terms in small parameters. The group velocity expression,
g

V ( )θ , is obtained 

from Thomsen’s derivation (Thomsen, 1986): 

  

2

p2 2

g p

dV ( )
V ( )=V ( )+

d

φ 
θ φ  

φ 
                                                                                       (2-2) 
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Where θ  is the ray angle from the source point to the wavefront (Figure 1). Under 

weak anisotropy approximation, the relationship between ray angle θ and phase angle 

φ  of P wave is given by (Thomsen, 1986):  

 

( )2tan tan 1 2 4( )sinθ = φ + δ + ε − δ φ                                                                          (2-3)                                   

 

Substituting Equation (2-2) and (2-3) into (2-1) retaining only linear terms in the small 

parameters ε, δ and θ shown on Equation (2-4) (Sena, 1991): 

 

 
2 -2 2 4

g gV ( )=V (0)(1-2δsin θ+2(δ-ε)sin θ)− θ                                                              (2-4) 

 

Equation (2-4) has three advantages over other traveltime equations: (1) Fast 

traveltime calculation using the group velocity; (2) Easy generation of Frechet’s 

kernels for inversion; (3) Providing physical insight into the wave propagation in 

anisotropic media.  

 

Because the anisotropic ray tracing method needs direct measurement of ray angle for 

traveltime calculation and Equation (2-4) provides the apparent ray angle measured 

from two neighboring ray tracing nodes with particular symmetry axis, I extended 

Equation (2-4) to TTI media to calculate traveltime by introducing tilted angle of 

symmetry axis from Equation (2-4):  

 

2 -2 2 4

g gV ( - )=V (0)(1-2δsin (θ- )+2(δ-ε)sin (θ- ))− θ ϕ ϕ ϕ                                            (2-5) 

 

Where φ is tilted angle of symmetry axis, (θ-φ) = γ is the group angle (Figure 2-2). 
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Figure 2-2: A sketch to illustrate TTI model. Variable φ is the tilted angle between 

vertical axis (dash line) and tilted symmetry axis (long dash dot line), θ is the angle 

between vertical axis and ray path (solid line), γ is the ray angle, or group angle (θ-φ). 

 

In ray tracing algorithm, the calculated velocity needed to combine with the length of 

ray path to obtain the traveltime (Appendix A): 

 

2 4

ray p0t=len *sw * 1-2δsin (θ-φ)+2(δ-ε)sin (θ-φ)                                                      (2-6)          

 

where t is traveltime and lenray is the distance along the raypath, swp0 is the P-wave 

slowness along the symmetry axis, or the axial slowness. 

 

2.2.2 Numerical experiments of anisotropic ray tracing 

 

Shortest path ray tracing is based on Huygens’ Principle (Musgrave 1970). It describes 

the basics of wave propagation which is that every point on a wavefront is a new 

source of secondary waves. For the next wavefront the wave solution is the summation 

ray

φ

φ

θ

γ
ray

φ

φ

θ
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of the contributions from all the ‘point sources’ on the previous wavefront. Shortest 

path ray tracing is defined in terms of a directed grapy consisting of n nodes, which 

are numbered 0, …, n-1. Node 0 is called the “source” (Figure 2-3). From source point 

to connect different forward points then record the traveltime between those two nodes. 

 

                                      

Figure 2-3: The distribution of ray tracing nodes. The source point is located at center 

of model. Purple points on each side are ray tracing nodes.  

 

In anisotropic media, the nodes distribution can be treated as same with isotropic 

media. However, because the velocity varies on different directions, the minimum 

traveltime from source to target point will change. Therefore the forward point can be 

referred to the one given shortest traveling path. To calculate P-wave traveltime in 

anisotropic media, Equation (2-6) is combined with the shortest path ray tracing 

algorithm. Figure (2-4) shows the wavefronts in TTI media with different tilted angle 

of symmetry axis. 
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Figure 2-4: The P-wave wavefronts in TI media with the different tilted angle φ, 

generating by TTI ray tracing. (a) φ = 0° (VTI). (b) φ = -67°. Here swp0 = 1s/km, ε = 

0.18, δ = -0.12. Dash line presents the vertical axis and solid line represents the 

direction of tilted symmetry axis. 
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2.2.2.1 Anisotropic ray tracing in 2D TTI media   

 

 In multilayered homogeneous anisotropic media, each layer consists of constant 

anisotropic parameter ε and δ, tilted angle φ of symmetry axis, and axial velocity 

along symmetry axis. A ray path is a sequence of nodes and connections succeeding 

each other. The traveltime along a path from one node to another is defined as the sum 

of the weights of the connections of the path. The final path is the path with smallest 

possible traveltime. Figure (2-5) shows a comparison of isotropic ray tracing and 

anisotropic ray tracing in a numerical model from West Africa. In Figure (2-5b), ray 

paths will derivate from vertical axis depending on how the tilted symmetry axis is 

assumed. Here, the tilted symmetry axes are approximated to perpendicular to layer 

bedding in area where steeply dipping exists.   
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Figure 2-5: Ray tracing in a numerical model from West Africa. (a) Isotropic ray 

tracing. (b) TTI ray tracing.   

 

2.2.2.2 Anisotropic ray tracing in 3D TTI media 

 

To extend the approach to 3D model, there are two different assumptions on the tilted 

angle of the anisotropic symmetry axis (Figure 2-6). The first one assumes that each 

model layer has a constant orientation of the symmetry axis, which is described by the 

tilted angle φ and azimuth angle Φ. However, geological interpretations indicate that it 

is rare that the symmetry axis in 3D deformable plane is expressed by only two angles. 

Some researches took the second assumption that tilted symmetry axis is 

perpendicular to the orientation of each layer (e.g.: Zhou et al. 2004; Zhou, 2006). 

 

        

  (a)         
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   (b)         

Figure 2-6: Two assumptions of tilted symmetry axis in 3D layered model. (a) Each 

layer has constant tilted angle φ and azimuth angle Ψ of symmetry axis. (b) The 

symmetry axis is always perpendicular to layer interface at each location. 

 

Various approaches have been proposed to divide the interface geometry into triangles, 

such as Delaunay triangularization (Bohm et al., 2000) and the atomic meshing 

method (Ruger and Hale, 2006). For traveltime tomography, the proper 

triangularization can minimize size differences and extreme height base ratios of the 

triangles and align the edges of the interface triangles with the geological boundaries. 

Zhou (2006) proposed an adaptive triangularization algorithm for 3D traveltime 

tomography. If the depth variations of the geological boundaries are known and are 

significant to the analysis, this adaptive triangularization can allow variable triangular 

divisions for different model interfaces. Figure (2-7) represents that the model consists 

of a number of layers based on adaptive triangulation algorithm.  
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                Figure 2-7: 3D layered model with adaptive triangularization algorithm.  

 

In 3D media, with the same assumption of traveltime equation, anisotropic ray tracing 

in TTI media can be proposed. Figure (2-8) shows the synthetic ray tracing in isotropic 

and TTI media where tilted symmetry axes are perpendicular to layer geometry in 

each location.  
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                                          (a) Isotropic ray tracing 

                

                                           (b) Anisotropic ray tracing 

Figure 2-8: 3D ray tracing in isotropic and TTI media. (a) Raypaths (dashed lines) in 

isotropic model with one vertical well located at the center of model. (b) Raypaths in 

TTI model with assumption of tilted symmetry axis perpendicular to layer interface. 

Here, the velocity is {2.0; 3.0; 4.0; 5.0} km/s from top to bottom layer. In (b), ε = 

{0.18; 0.16; 0.14; 0.12} and δ = {0.15; 0.13; 0.11; 0.09} from top to bottom layer 

respectively. 

 



 

                                                                    24 

2.2.3 Waveform modeling in anisotropic media 

 

Zhou et al (2006a) proposed a new anisotropic acoustic equation which is based on 

dispersion relation as Alkhalifah’s (2000). By introducing an auxiliary function, the 

fourth order differential equation becomes a coupled second order differential 

equations: 

 

2 2 2 2
2

2 2 2 2

2 2 2
2

2 2 2

(1 2 )( )( )

2 ( )( )( )

p

p

p
V p q p

t x y z

q
V p q

t x y

 ∂ ∂ ∂ ∂
= + + + + 

∂ ∂ ∂ ∂ 
∂ ∂ ∂

= − + +
∂ ∂ ∂

δ

ε δ
                                                 (2-7) 

 

Here p is P wavefield and q is an auxiliary wavefield to compensate the loss of 

anisotropy for VTI media.  

 

By eliminating the propagation items along y direction, Figure (2-9) shows the 

different snapshots generated by Equation (2-7) in 2D VTI media. 
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Figure 2-9: (a) ε = 0.0, δ=0.0; (b) ε = δ= 0.15; (c) ε = 0.15, δ=-0.15. The source 

wavelet is Ricker wavelet with maximum frequency 60Hz. All three snapshots are 

recorded at t=0.3 s and Vp0=1.0 km/s. 
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One can notice that there is a diamond-shaped wave appearing in the middle of the 

VTI wave field.  It is caused by the solution of VTI wave equation.  This additional 

wave, which only appears in anisotropic media, has been discussed in many papers 

(Alkhalifah, 2000; Grechka et al., 2004).  Alkhalifah (2000) experimented that when 

the source point is located at isotropic media above the VTI media, the artifact will 

disappear (Figure 2-10).  
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Figure 2-10:  The wave field at 0.8 s is caused by a source at a central lateral location.  

The model consists of two layers.  The first layer is isotropic with v =1.5 km/s, the 

second layer (in b, c and d) is VTI with v =2.5 km/s, ε=0.2 and δ=0.05.  The reflector 

is at 200 units.  The source depth varies with (a) the source is at 200 units in isotropic 

model, (b) the source is at 200 units in VTI model, (c) the source is at 195 units VTI 

model, and (d) the source is at 190 units in VTI model.  The additional wave decays 

gradually with increasing distance between the source and the VTI layer. 

 
 

Figure (2-11) shows the snapshots of waveform modeling in a synthetic 3D VTI media. 

In VTI media, seismic waves will propagate faster along horizontal direction. Because 

ε controls the difference between horizontal and vertical velocity, strongest ε will 

provide fastest wave velocity at horizontal direction. This may impact picking of first 

arrivals and result in errors for parameter estimation. 

 

 

(a)        (b)   
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      (c)      (d)   

   

Figure 2-11: Depth slices of waveform in 3D VTI media. (a) 3D velocity model 

assuming blue area is anisotropic. (b) Depth slice when ε = δ = 0.0; (c) depth slice 

when ε = 0.1 and δ = 0.05; (d) depth slice when ε = 0.2 and δ = 0.2. The red dashed 

box in (a) is the depth of each slice. Assuming blue area is VTI media. 

 

Although VTI media is a good approximation of anisotropic model, it is only for 

simple geological model. When sedimentation and tectonic processes produce dip and 

thickness variations in rock layers, their velocity structures may be approximated as 

TTI media. Since Alkhalifah (2000) introduced the “acoustic” approximation for VTI 

media, it has attracted many geophysicists to continue to work on it for modeling and 

migration in TTI media (Zhou et al., 2006b; Zhang et al., 2006; Du et al., 2007). After 

taking into account the tilted angle in TI media, Zhou et al. (2006b) proposed an 

acoustic wave equation in TTI media: 
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Figure (2-12) shows a TTI waveform modeling generated by Equation (2-8) when 

tilted angle of symmetry axis is 30°.  
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Figure 2-12: Snapshot of 2D TTI waveform modeling. Here, ε = 0.1, δ = -0.1, φ = 30°.  

 

To facilitate traveltime inversion, Figure (2-13) shows a comparison between the ray 

tracing and waveform modeling results in a multi-layer TTI model. The first arrivals 

from the ray tracing are in good agreement with the first arrivals generated using 

Equation (2-8) for the same anisotropic model. The small difference at near surface is 

due to the source delay and limited frequency in waveform modeling. Anisotropic ray 
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tracing estimates accurate traveltime with less computation time than waveform 

modeling in this case. Overall, the comparison demonstrates that the TTI ray tracing 

provides accurate result and takes less computation time and memory than the 

waveform modeling. 

 

(a) 

 Vp0(km/s) ε δ φ 

Layer1 2.0 0.10 -0.04 20° 

Layer2 2.5 0.12 -0.06 30° 

Layer3 3.0 0.14 -0.08 40° 

Layer4 3.5 0.16 -0.10 50° 
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Figure 2-13. The comparisons between TTI ray tracing and TTI waveform modeling. 

(a) Anisotropic parameters in each layer. (b) TTI Ray tracing. (c) Common shot gather 

generated by TTI finite difference waveform modeling. The dotted line indicates the 

picked first arrival traveltime from (b). 

 

2.3 CHALLENGES OF ANISOTROPIC FORWARD MODELING  

 

2.3.1 Challenges of anisotropic ray tracing 

 

The computation time of anisotropic ray tracing is mainly depends on the density of 

ray tracing nodes placed on the boundaries. The sparser ray tracing nodes have, the 

faster computation time will be. However, the trade off between computational time 

and accuracy become an issue in terms of traveltime calculation. The proper setting of 

ray tracing nodes will provide acceptable computation time and accurate results. In 3D 

model, the ray tracing nodes only need to be placed on the facets of the triangular 

prisms. If velocity gradient is introduced for each layer (Liu et al., 2009a, 2009b), 

more ray-tracing nodes must be placed inside each layer which will increase great 

computational time. In shortest path ray tracing algorithm, the number of ray tracing 
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nodes is adjustable when applying in the tomographic inversions. It provides the 

optimized solution from trade offs of computational time and accuracy. 

 

One of the limitations of this anisotropic ray tracing approach is that it can not 

generate triplication effects when dealing with S-wave ray tracing. The reason is 

because shortest path ray tracing algorithm only considers first arrivals. This limitation 

can be avoid by applying shooting method or replaced with waveform modeling to 

obtain traveltime data when S-wave information is necessary.  

 

2.3.2 Challenges of anisotropic waveform modeling 

 

Due to the pseudo-acoustic approximation on the elastic wavefield for VTI and TTI 

media, the diamond-shape artifacts is clearly present (Figure 2-9c). Such artifacts can 

be suppressed by placing the source in isotropic layers . However, the strong 

variations of dip angle and azimuth in terms of the tilted axis of symmetry can cause 

wave propagation to be unstable (Zhang and Zhang, 2009). Flectcher et al. (2009) 

proposed an alternative method which is adding a finite shear wave velocity to help 

wave propagation not blow out, but the shear wave exists in P-wave propagation (Jin 

et al., 2010). However, Flectcher et al.’s approximation (2009) will increase 

computation time and memory requirement. With rapid development of computer 

hardware, it is still promising and increasingly feasible to apply anisotropic waveform 

modeling and migration in industry production application. 

 

2.4 CHAPTER SUMMARY 

 

 

In this chapter, the algorithms of 2D/3D shortest path ray tracing algorithms in TTI 

media are developed. A direct extension from Sena’s equation (1991) into TTI media 
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can generate accurate first arrivals compared with finite difference waveform 

modeling. The new TTI traveltime equation has advantages on fast traveltime 

calculation using the group velocity, and it is capable to easily generate of Frechet’s 

kernels for tomographic inversion.  

 

In 2D TTI media, the anisotropic ray tracing is capable to handle the arbitrarily tilted 

axis of symmetry. To best describe the subsurface structure, the assumption of tilted 

symmetry axis perpendicular to layer bedding is more proper for ray tracing approach 

in 3D media. The numerical results illustrate that the anisotropy significantly affects 

the ray trajectory in the media, considering anisotropy in particular allows us to 

understand the location of the transmission or reflection points for different tilted axes 

of symmetry.  
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CHAPTER 3: ANISOTRPIC TRAVELTIME TOMOGRAPHY IN 

VTI/TTI MEDIA 

 

3.1 INTRODUCTION  

 

Seismic tomography, a methodology of estimating the Earth’s properties, has been 

applied to solid Earth sciences and exploration seismology. There are two main types 

of seismic data to be inverted by tomography: traveltime data and waveform data. 

Traveltime data is used to reconstruct Earth’s velocity models with lower resolution 

compared with waveform data. However, traveltime tomography is robust and easy to 

implement with fast computation ability.  

 

In solid Earth sciences, traveltime tomography is extended to reach the inversion of 

the Earth’s eigenfrequencies and dispersion properties of long-period surface waves, 

using perturbation theory on normal modes. By 1984, Woodhouse and Dziewonski 

(1984) began to use long-period data to image the upper mantle using the lowest order 

spherical harmonics. This led to an immensely fruitful era in which the large scale 

structure of the Earth was mapped in increasing details.    

 

In exploration seismology, ray-based tomography has become the standard model 

building tool for seismic depth imaging. With the increasing of computer power, the 

evolution of tomography has been driven by exploration demands (e.g.: Li et al., 2008; 

Woodward et al., 2008, Zhou et al., 2008). Standard model resolution has increased 

from a few thousand meters to a few hundred meters. This allows us to obtain high 
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quality, complex residual moveout data as densely as 50m horizontally and vertically. 

The multiple azimuth dataset can help to improve illumination and multiple 

suppressions (Zou et al., 2008) by high resolution traveltime tomography. In recent 

years, a shift from conventional isotropic to predominantly anisotropic model becomes 

necessary to provide accurate subsurface model, such as subsalt and thrust fault, for 

depth migration.  

 

Layered tomography was developed primarily for reflection imaging (Bishop et al., 

1985; Kosloff et al., 1996).  It can be used to update the geometry of velocity 

interfaces using the residual traveltimes of reflector. Layered tomography is applicable 

where geological features such as weathering zones, stratigraphic units, and salt bodies 

can be represented easily by layers (Zhou, 2006). It has potential to constrain the 

geometry of velocity interfaces in areas with nearly parallel rays.    

 

In this chapter, first arrival traveltime tomography algorithm in 2D/3D TTI media is 

developed. The derived analytical kernels represent the sensitivities of each 

anisotropic parameter in terms of traveltime. Such kernels directly indicate the 

observation of the structural parameters by analyzing their spatial distribution patterns. 

Several synthetic experiments show some combinations of anisotropic parameters can 

be invert successfully. The inversion results are necessary for depth migration.   

 

3.2 ANALYSIS OF FRECHET KERNELS ON TRAVELTIME DATA 

 

To investigate the earth’s structure, finite-frequency Frechet kernels for surface wave 

phase velocities and body wave traveltime from earthquakes have been discussed 

(Marquering et al., 2002; Zhou and Greeenhalgn, 2009). Such kernels directly indicate 

the sensitivity of the observations to the inversion parameters by analyzing the spatial 
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distribution patterns. Frechet kernels are also sensitive when different acquisition 

geometries involved which is referred to the variation of incident angles. The 

calculated Frechet derivatives can be used for a model parameterization explicitly and 

directly used in any local search minimization inversion algorithm, such as conjugate 

gradient or Gauss-Newton to yield the elements of the Jacobian matrix directly for 

arbitrary model parameterization.  

 

3.2.1 Derivation of Frechet TTI kernels on traveltime data 

 

The TTI parameters consist of the anisotropic parameters ε and δ, the tilted angle φ of 

their symmetry axis, layer velocity or slowness along the symmetry axes, and the 

thickness variation of the layer. To derive a set of TTI kernels for anisotropic 

tomography, recall the Equation (2-5): 

 

2 4

ray p0t len *sw * 1-2δsin (θ-φ)+2(δ-ε)sin (θ-φ)=                                                       

 

The TTI kernels can be derived by the first derivative of Equation (2-5) over relative 

TTI anisotropic parameter (Appendix B): 

 

The kernel for slowness is derived as: 

 

1
2 4 2

ray

p0

= *(1-2δsin γ+2(δ-ε)sinγ )
( )

∂

∂

t
len

sw
                                                           (3-1) 

 

The kernels for anisotropic parameters ε and δ are derived as: 
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4

ray p0

2 4

-( * *sin γ)
=
ε 1-2δsin γ+2(δ-ε)sin γ

∂

∂

len swt
                                                                              (3-2) 

 

4 2

ray p0

2 4

* *(sin γ-sin γ)
=
δ 1-2δsin γ+2(δ-ε)sin γ

∂

∂

len swt
                                                                              (3-3) 

 

In deriving the kernel for the tilted angle of the symmetry axis, taking the sine 

function of the tilted angle φ as the variable to obtain 

 

3

2 4

= * *p0ray
(sinφ)

2δsinγ(sinθtgφ + cosθcosφ) + 4(ε - δ)sin γ(sinθtgφ + cosθcosφ)
                 

1- 2δsin γ + 2(δ - ε)sin γ

∂

∂

  

t
len sw

        (3-4) 

 

Finally for the interface k_zil, the analytical formulation is not available, except for 

simple cases (e.g., Kosloff et al., 1996; Zhou, 2003). Here, the interface kernels are 

estimated numerically following Zhou (2006). The calculated Frechet derivatives can 

be used for a model parameterization explicitly and directly used in any local search 

minimization inversion algorithm, such as conjugate gradient (Scales, 1987) or Gauss-

Newton (Pratt et al., 1998) to yield the elements of the Jacobian matrix directly for 

arbitrary model parameterization. Each Frechet kernel presents the rates of change in 

the observations to perturbations in cell or medium properties, such as Thomsen’s 

anisotropic parameter. Therefore, the Frechet kernels are examined as sensitivity 
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functions of the data to a particular parameter and indicate the sensitivity variations 

with various surveying configurations (Zhou and Greenhalgh, 2009).       

 

 

3.2.2 The sensitivity of Frechet TTI kernels on variation of ray angles 

 

Each of the above kernels depicts the sensitivity of the traveltime to the corresponding 

inversion variable, hence quantifying the resolvability for the variable. Based on the 

analytical kernels, the sensitivity of traveltime to key TTI parameters as a function of 

the ray angles for a specified set of anisotropic parameters is shown in Fig. 4. At the 

same ray angle, the sensitivity of the traveltime to different TTI parameters can be 

quite different. For instance, the axial velocity has best sensitivity in all ran angle 

range, it can be considered as first priority inversion parameter in any acquisition 

geometry. The kernel for ε reaches to a high peak around ray angle 90°, meaning that ε 

is most resolvable using rays along the direction normal to the tilt symmetry axis, 

meaning that crosswell geometry may be the best acquisition geometry to resolve ε. 

The kernel for δ reaches to its peak around ray angle 45°, hence it indicates that δ is 

most resolvable using rays along 45° direction, or in VSP acquisition geometry. The 

kernel for sine function of tilted angle φ reaches to a broad peak with intermediate 

magnitude between ray angle 60° and 80°, indicating it has a similar sensitivity trend 

but less tolerant to noise in comparison with that for ε. Since the magnitude of the 

kernel for ε is much greater (more than four times in this case) than that for δ in the 

range of large ray angles, it is generally much easier to use traveltimes to invert for ε 

than for δ in crosswell geometry, but the reversed assumption in VSP acquisition 

geometry. The tilted angle φ shows the average resolvability in both VSP and 

crosswell geometries, it could be inverted after estimating ε in crosswell geometry or 

estimating δ in VSP geometry. Though a simple anisotropic model with one set of the 

parameter values is used to show the sensitivity of the traveltime to the inversion 
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variables here, we may expect similar trend in the sensitivity for more complicated 

TTI models as mosaics of the simple model.  
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Figure 3-1: The sensitivity of traveltime to key TTI parameters as a function of the ray 

angles. Here, swp0 = 1 s/m, lenray = 1 m, ε= 0.15 and δ = 0.1 for calculating kernels 

using Equation (3-1) – (3-4). The kernel of sine function of tilted angle φ is calculated 

with assumption of 45° tilted angle.     
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Figure 3-2: Different kernels of sine function of tilted angle φ when ray angle changes. 

 

To calculate the numerical kernels of layer geometry, the ray nodes on the interface 

will be moved by a small vertical perturbation of ∆z. The refraction kernel is estimated 

as the ratio of the traveltime difference between refraction raypath SRT and SR’T  

over the vertical perturbation ∆z (Figure 3-3) . Figure (3-4) illustrates the sensitivity of 

numerical kernel on the different incident angles. Although it only shows part of 

incident angle, the general trend indicates that the kernel of layer geometry is sensitive 

with traveltime when incident angle become larger. Therefore, crosswell or VSP 

acquisition geometry should be considered as preferred recording geometry for 

estimating layer geometry.  
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Figure 3-3: Numerical calculation of the layer geometry kernels for a node R. Node R 

is moved to R’ by a small perturbation ∆z. The refraction kernels are estimated as the 

ratio of the traveltime difference between refraction raypath SRT and SR’T over the 

vertical perturbation ∆z. 
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Figure 3-4:  The numerical kernel of layer geometry. (Upper) Transmitted rays in 2-

layer velocity model. (Lower) The corresponding numerical kernels.  
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3.3 LAYERED TRAVELTIME TOMOGRAPHY IN VTI/TTI MEDIA 

 

Anisotropic traveltime tomography uses traveltimes of seismic waves to constrain 

anisotropic velocity variations. Cell-based anisotropic tomography inverts for velocity 

and anisotropic parameters as a function of spatial location. The velocity is resolvable 

where there are a sufficient number of intersecting rays. However, poor ray angle 

coverage leads to smear artifacts bearing the imprint of the raypaths and poor 

resolution of anisotropic anomalies (Cerveny, 2001). Therefore, layered tomography 

was developed to update the geometries of velocity interfaces using residual 

traveltimes of reflectors (Bishop et al., 1985; Kosloff et al., 1996). It avoids the 

problems of smearing artifacts and it is applicable where geological features can be 

represented easily by layers, such as weathering zones, stratigraphic units, and salt 

bodies. 

  

Zhou (2006) proposed a layered tomography named Deformable Layer Tomography, 

or DLT. A conventional DLT model consists of a number of layers based on a 

stratigraphic interpretation. This approach can be used to invert for layer velocities and 

interface geometry simultaneously. The traveltime residual for the ith ray can be 

represented as: 

 

i ij j il l_ _= +∑ ∑
J L

j l

t k s s k z zδ δ δ                                                                        (3-5) 

 

where δsj is the slowness perturbation of the jth layer cell, k_sij is the slowness kernel, 

δzl is the interface perturbation at the lth node, and k_zil is the interface kernel. J is the 

total number of slowness cells and L is the total number of the interface nodes to be 
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inverted. The introduction of anisotropy brings one more term to the traveltime 

equation:  

 

i ij j il l ig g_ _ _= + +∑ ∑ ∑
J L G

j l g

t k s s k z z kδ δ δ ξ δξ                                            (3-6) 

 

where δξg is the perturbation of the gth TTI parameters, such as ε, δ or the titled angle 

φ, and k_ξig is the corresponding kernel. Equation (3-6) describes that in anisotropic 

layered traveltime tomography the residual traveltime is compound with axial 

velocity, layer geometry, anisotropic parameters ε, δ and tilted symmetry axis. The 

variation in one of those parameters will affect the total residual traveltime. 

Nonuniqueness between those five parameters becomes unavoidable and there is a 

need to declare the sensitivity of each parameter on the traveltime to estimate the most 

error-tolerant parameter.          

        

In traveltime tomography, each iteration consists of ray tracing in current reference 

model to compute the Frechet kernels (anisotropic kernels) and traveltime residuals, 

inverting for model updates and assessing data-fitting statistics and model variations 

(Figure 3-5). The calculations of the data fit provide the criteria to terminate the 

iteration and to select best model as output.   
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                    Figure 3-5: Flowchart of the anisotropic traveltime tomography. 

 

3.4 NUMERICAL EXAMPLES OF ANISOTROPIC LAYER TOMOGRAPHY IN 2D 

MEDIA 

 

Following examples show the feasibility of anisotropic layer tomography to estimate 

interval anisotropic parameters, which include the velocity along the symmetry axis, 

the thickness-varying interface, Thomsen’s two anisotropic parameter ε and δ, and the 

tilted angle φ of the symmetry axes. Because inverting for all five parameters 
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simultaneously can bring nonuniqueness and unstable results, each experiment is 

assigned to invert for different combinations of anisotropic parameters, such as 

inverting for the velocity along the symmetry axis plus Thomsen’s parameters ε and δ 

together, or inverting for the thickness-varying interface plus the tilted angle φ of the 

symmetry axis. By adding random Gaussian noise, the inversion results indicate the 

feasibility of anisotropic layer tomography in field data application.  

 

3.4.1 Crosswell anisotropic tomography in single-cell model with noise-free 

data 

 

The experiment begins with the simple case of a 2D TTI layered traveltime 

tomography in a block model. The simulation is to determine anisotropic properties in 

a single piece of rock that has a set of pre-defined anisotropic parameters. We use 

crosswell geometry and a combination of crosswell plus VSP acquisition geometry 

(Figure 3-6) that give different patterns in raypath coverage. The noise-free data, 

computed by anisotropic shortest path ray tracing, are used as the observed data to 

examine how accurately the parameters can be recovered by inverting the axial 

velocity, anisotropic parameters ε and δ, and the tilted angle φ of the symmetry axis 

together. The values of the model parameters in the initial reference model differ 

much from that in the true model. Table 3-1 lists the values for one of the inversion 

tests by TTI layered traveltime tomography. In this case all of the inversion 

parameters are resolved very well because the good ray coverage.      
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Figure 3-6: Two seismic recording geometries and their relative raypaths in a single 

block model. (a) Crosswell geometry. (b) Crosswell plus VSP geometry. The triangle 

indicates the source, and the star indicates the receiver. 

 

Table 3-1: Anisotropic parameters in a 2D single block model and solutions using two 

different recording geometries. 

 

 True model Initial 

model 

Crosswell 

solution 

Crosswell plus 

VSP solution 

Vp0 [km/s] 2.0 2.5 2.003 2.000 

ε 0.15 0.0 0.150 0.150 

δ 0.10 0.0 0.101 0.100 

φ [°] 25 0 24.999 25.000 

 

 

 

3.4.2 Crosswell Anisotropic Tomography in Single-cell Model with 5% 

Gaussian Noise 

 

In this example, the 5% random Gaussian noise is added into input traveltime data in 

each case (Crosswell only and Crosswell plus VSP). In each case, I invert for the axial 
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velocity, anisotropic parameters ε and δ together while the tilted angle φ of symmetry 

axis is fixed. Table (3-2) shows the inversion results from two different acquisition 

geometries. Although the overall quality of inversion results is decreased, those 

parameters are still in acceptable range.  

 

Table 3-2: Anisotropic parameters in a 2D single block model and solutions using two 

different recording geometries with 5% Gauss noise. 

 True model Initial 

model 

Crosswell 

solution 

Crosswell plus 

VSP solution 

Vp0 [km/s] 2.0 2.5 2.051 2.009 

ε 0.15 0.0 0.132 0.145 

δ 0.10 0.0 0.030 0.088 

 

In this test, inverted ε is better than δ because large ran angles which is identical with 

the analysis of Frechet kernel. By adding VSP acquisition geometry on crosswell 

geometry, the precision of inverted δ has significantly increase. This may indicate that 

VSP could be a necessary acquisition geometry  e acquisition geometry of Crosswell 

plus VSP provides large ray angle, the inversion results are better than that of only 

Crosswell. Therefore, to efficiently estimate anisotropic parameters, the acquisition 

geometry that provides wider ray angle coverage is preferred. 

 

3.4.3 Crosswell anisotropic tomography in multi-layer media with noise-

free data 

 

Crosswell tomography provides wide ray angle coverage for detecting anisotropy. I 

further show a crosswell tomographic inversion for the interface geometry, ε and the 

tilted angle φ (Figure 3-7). two inversions are experimented with different δ 

assumptions to test the robustness of the approach. In inversion I (Figure 3-7c), δ is 

assumed to be correct value in each layer, however in inversion II (Figure 3-7d), δ is 

assumed to be zero in each layer and is considered as noise in data space.  
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Both inversions show good approximations. Inversion I is well resolved with the 

average solution errors of 0.58% for ε and 0.45% for tilted angle φ. The average 

solution errors for inversion II are 1.8% for ε and 2.58% for φ. Those inversions 

illustrate that even without δ information, other TTI parameters, such as interface 

geometry, ε or tilted angle φ, still can be recovered properly. The parameter δ can be 

recovered by re-applying tomographic inversion or moveout analysis.  
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Figure 3-7: 2D TTI crosswell test. (a) True model; (b) Reference model; (c) The result 

of inversion I with δ of 0.1, 0.04, 0.15 in each layer; (d) The result of inversion II with 

δ of 0.0, 0.0, 0.0 in each layer. Red arrows represent true symmetry axes in (a) and 

inverted symmetry axes in (b) and (d). Blue arrows denote the initial vertical 

symmetry axes.   

 

3.4.4 Crosswell anisotropic tomography in multi-layer media with 5% 

Gaussian noise 

 

As same with previous tests, in this experiment, the 5% random Gauss noise is added 

into the input traveltime data to examine the reliability of anisotropic layer 

tomography. In this test, I invert for layer geometry, anisotropic parameter ε and tilted 
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angle φ of symmetry axis while parameter δ are constant during inversion process. 

From Figure (3-8), the inverted layer geometry still make the geologically sense with 

approximate structure and acceptable anisotropic parameters. 
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Figure 3-8: 2D Crosswell tomography by adding 5% Gaussian noise when inverting 

for layer geometry, ε and φ. (a) True model. (b) Inversion result. In this test, the 

inversion parameters are layer geometry, ε and tilted angle φ. 

 

 

Figure (3-9) shows the inversion for the layer geometry, anisotropic parameter ε and δ 

together with 5% Gaussian noise in traveltime data when assuming tilted angle φ of 

symmetry axis is vertical. The difference between Figure (3-8) and Figure (3-9) is the 

inversion parameter δ instead of the tilted angle φ of the symmetry axes.  

 

Crosswell acquisition geometry provides good ray coverage for detecting anisotropy, 

especially horizontal velocity. Large ray angle promise the ray path going through 

horizontally to increase the probability of inverting for anisotropic parameter ε 

successfully. However, crosswell acquisition geometry is not common acquisition 

geometry in industry because of high cost. Find a way to economically estimating 

structure properties is significant to reduce the exploitation expenses. Next chapter 

will give a discussion on how to build anisotropic velocity model with reasonable 

assumptions.     
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Figure 3-9: 2D Crosswell tomography by adding 5% Gaussian noise when inverting 

for layer geometry, ε and δ together. (a) True model. (b) Inversion result. In this test, 

the inversion parameters are layer geometry, ε and δ. 

 

 

3.4.5 VSP anisotropic tomography in multi-layer media with noise-free 

data 

 

 

VSP has been experimented as good acquisition geometry to detect anisotropy (e.g., 

Slawinski et al., 2003; Maultzsch et al., 2007). A major challenge is to distinguish the 

effect of depth variation of velocity interfaces from that caused by anisotropy in the 

layer velocities, especially if only first arrivals are used. Simplifications like model 

with planar interface or fixed interface geometry have been implemented to help 

constrain the velocity models using VSP first arrivals. Here evaluate the inversion for 

the interface geometry and layered anisotropic parameters ε and δ using VSP first 

arrivals (Figure 3-10). The values of the true three-layer model are, from the top to 

bottom layers, the P-wave axial velocities of 2.0, 2.5, 3.0 km/s, and the tilted angles of 

10°, -10°, 1° for the symmetry axes in these layers. Figure (3-10d) shows that the TTI 

parameters can be well resolved under an ideal situation with noise-free data, though 

the initial reference values differ much from the true model values. The details of each 
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inverted parameter are shown in Table (3-3). When ray coverage is improved, the 

results become more accurate.  

                                    

Figure 3-10: 2D layered TTI tomography by VSP first arrivals. (a) True TTI model 

and the distributions of sources (triangles) and receivers (stars). The arrows denote the 

tilted angles of symmetry in the layer anisotropic velocities. (b) TTI ray tracing in true 

model. (c) Initial reference model with isotropic assumptions. (d) Inverted model. The 

dash lines indicate the true interface geometry. The axial velocities are fixed during 

inversion process. In panels (b) and (d) the region outside ray coverage is lightened. 
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Table 3-3: 2D layered anisotropic parameter estimation using noise-free VSP first 

arrivals. 

True model Initial reference 

model 

Inverted model  

       ε      δ       ε       δ       ε       δ 

Layer1     0.15     0.10      0.0      0.0    0.150    0.10 

Layer2     0.10     0.04      0.0      0.0    0.093    0.038 

Layer3     0.14     0.15      0.0      0.0    0.134    0.135 

 

3.4.6 VSP anisotropic tomography in multi-layer media with 5% Gaussian 

noise 

 

  

By adding 5% Gaussian noise in traveltime data, in this test, I invert for layer 

geometry, anisotropic parameters ε and δ together (Figure 3-11) when axial velocity is 

given. The inversion results show that in first layer, parameters ε and δ give good 

inverted value.  However, because the layer geometry is deviated progressively from 

top layer down to bottom layer by introducing Gauss noise, ε and δ in third layer 

shows relatively large errors. It indicates that layer geometry can be more sensitively 

affected by traveltime data than ε and δ. However, for VSP acquisition geometry, 

check shot velocity is relatively easy to obtain and rough position of layer interface 

also can be guessed based on well-log data. The easiest case is to assume layer 

geometry is flat and use measured check shot velocity to invert for other parameters. 

Nevertheless, successfully estimating layer geometry and velocity together is still 

difficult. One solution may be to use prior geological information to constrain the 

variability of subsurface strata and give simple reference model.   
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Figure 3-11: 2D VSP anisotropic layer tomography with 5% Gauss noise. (a) True 

model. (b) Inversion results.   

 

3.5 NUMERICAL EXAMPLES OF ANISOTROPIC LAYERED TOMOGRAPHY IN 3D 

MEDIA 

 

To examine the capability of the 3D layered traveltime tomography in TTI media, 

several synthetic true models are constructed with several deformable layers while 

each layer has different interval anisotropic parameters. The tilted symmetry axis is 

assumed to be perpendicular to bedding. The most critical for tomography in 3D 

media is ray path coverage. Sufficient ray path coverage from different directions will 

result in good quality of inversion result. However, any gaps or deficiencies in ray 

path coverage could affect the resolution of the tomographic results, and the most 

effective solution is to use wide-azimuth data with a wide spread of sources and 

receivers. 
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3.5.1 Anisotropic layer tomography by inverting for axial velocity, ε and δ  

 

The first test shows a tomographic inversion for axial velocity Vp(0), anisotropic 

parameter ε and δ using VSP first arrivals. The model is configured with 1004 sources 

on surface and 10 receivers placed in a vertical well (Figure 3-12). In this model, the 

ratio of offset over depth is almost close to five. This indicates that most rays travel 

horizontally. This provides good ray coverage for estimating horizontal velocity which 

is expressed by parameter ε. The interface geometry is fixed during inversion with 

tilted symmetry axis perpendicular to bedding. We use noise-free data to see how 

accurately the parameters can be obtained with poor initial guesses of the inversion 

parameters in 3D case (Table 3-4). After ten iterations, the results illustrate that these 

TTI parameters can be well resolved by new method under ideal situation. In Table (3-

4), the red color denotes the reference model for tomographic inversion. The total 

twelve inversion variables are updated simultaneously in each iteration. As shown in 

Jiang and Zhou (2010), the resultant features are consistent with the sensitivity 

behaviors of the TTI kernels.  

 

The inherent challenge of velocity modeling is the uncertainty of parameter 

estimation. TTI anisotropy is dominated in the tilted direction of primary thrusting, but 

counter thrusting and other minor deformation may reoriented or disrupt the effective 

symmetry axis. We analyze a test to invert for same parameters (Vp(0), ε and δ) in VTI 

media by recorded first arrivals in TTI media. The interface geometry is given and 

symmetry axis is assumed to be vertical in each location. Table (3-5) shows the 

tomographic results. The quality of inversion result has been decreased slightly due to 

the assumption of VTI in TTI media. The inverted values with underline indicate that 

it may be not acceptable for depth imaging. The new ambiguity from tilted angle of 

symmetry axis can degrade the quality of anisotropic parameter building and lead to 

significant distortions in the image quality. 
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V1 = 1.0 km/s

V2 = 2.0 km/s

V3 = 3.0 km/s

V4 = 4.0 km/s

 

         Figure 3-12: Model geometry and source and receiver distributions. 

 

 

         Table 3-4: Inversion results of 3D TTI tomography   

 

      True (Ref.) Model     Inversion  Result  

 Vp(0)     

(km/s) 

     ε       δ  Vp(0) 

(km/s) 

  ε   δ 

Layer1    1.0      

 (2.0) 

  0.18       

 (0.0) 

 -0.11    

 (0.0) 

 1.000 0.177 -0.109 

Layer2    2.0      

 (3.0) 

  0.14  

 (0.0) 

 -0.09   

 (0.0) 

 2.001 0.140 -0.091 

Layer3    3.0     

 (4.0) 

  0.10  

 (0.0) 

 -0.07  

 (0.0) 

 3.019 0.095 -0.087 

Layer4     4.0      

 (5.0) 

  0.07  

 (0.0) 

 -0.05   

 (0.0) 

 

 3.866 0.098  0.028 
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 Table 3-5: 3D VTI tomography with TTI first arrival data 

 

      True (Ref.) Model     Inversion  Result  

 Vp(0)     

(km/s) 

     ε       δ  Vp(0) 

(km/s) 

  ε   δ 

Layer1    1.0      

 (2.0) 

  0.18       

 (0.0) 

 -0.11    

 (0.0) 

 1.000 0.176 -0.105 

Layer2    2.0      

 (3.0) 

  0.14  

 (0.0) 

 -0.09   

 (0.0) 

 1.998 0.140 -0.084 

Layer3    3.0     

 (4.0) 

  0.10  

 (0.0) 

 -0.07  

 (0.0) 

 3.097 0.074 -0.159 

Layer4     4.0      

 (5.0) 

  0.07  

 (0.0) 

 -0.05   

 (0.0) 

 

 3.588 0.154  0.146 

 

 

3.5.2 Anisotropic layered tomography by inverting for layer geometry, ε 

and δ  

 

In traditional cell or grid tomography, the inverted velocity is resolvable only at those 

places where there are a sufficient number of intersecting rays (Zhou, 2006). Poor ray 

coverage can lead to smear artifacts and poor resolution of velocity anomaly. Layered 

tomography is applicable where geological features such as weathering zone, salt 

bodies which can be represented easily by layers. In this test, I invert for thickness-

vary layer geometry and anisotropic parameters ε and δ together with the assumption 

of tilted symmetry axis perpendicular to bedding. The layer geometry of synthetic true 

model is same with previous test but with ε = {0.18; 0.16; 0.14; 0.12} and δ = {-0.11; 

-0.13; -0.15; -0.17} from top to bottom layer. The initial reference model is given as 

planer model with zero anisotropy. Axial velocity in each layer is constant during 

inversion process. Figure (3-13) shows the reference model and inversion results by 

inverting for three thickness-varying layers and anisotropic parameter ε and δ together. 



 

                                                                    24 

It shows parameter ε can be resolved under acceptable error range. However, δ shows 

that relatively high deviation. The reason is because the traveltime is depended on 

both layered kernels and anisotropic kernels, such as axial velocity, ε and δ. The 

layered kernels give strong influence on the calculated traveltime than kernels for δ. 

Because most ray travel horizontally, the kernels for ε provides relative large value 

and make ε “visible” during inversion process. On the whole, any gaps or deficiencies 

in raypath coverage could affect the resolution of tomographic results. 

 

   (a)  
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     (b)  

 

Figure 3-13: (a) Initial model; (b) Inversion result. In (b), the inverted ε are {0.167; 

0.127; 0.109; 0.077} and inverted δ are {-0.163; -0.194; -0.113; -0.198} for the top to 

bottom layers. The parameter in true model are ε = {0.18; 0.16; 0.14; 0.12} and δ = {-

0.11; -0.13; -0.15; -0.17}. 

 

          

3.6 CHAPTER SUMMARY 

 

Though good estimates of the anisotropic velocity structure will enhance the quality of 

depth imaging, results from many anisotropic depth-imaging projects are 

disappointing because estimating anisotropic parameters in depth domain depends on 

many elements. Sparse and irregular data acquisition, incomplete illumination of 

subsurface strata and erroneous data with low signal-to-noise ratios may result in 

incorrect estimates. In this study, an anisotropic layer tomography has been developed 

to estimate the anisotropic parameters in thickness-varying layered models. The 

traveltime equation leads to analytical kernels for different anisotropic parameters that 

illuminate the sensitivity of each anisotropic parameter with respect to various types of 

noise in traveltime data, including colored noise due to error in some of the model 
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parameters 

 

In our model setup, each anisotropic layer has five types of parameters, the velocity 

along the symmetry axis, the thickness-varying interface, Thomsen’s two anisotropic 

parameter ε and δ, and the tilted angle φ of the symmetry axes. The quality of the 

model parameterization and initial estimates of the model variables depends largely on 

the available geological and geophysical information. In the model parameterization 

process we shall always try to develop realistic but simple models that will help 

reduce the nonuniqueness in the model building process.  

 

Although the synthetic tests in this chapter show good probability to invert for several 

anisotropic parameters using first arrivals, field data may bring more challenges. For 

example, irregular acquisition can limit the range of ray coverage and result in 

deficiencies in raypath direction, low signal to noise ratio will increase the difficulty 

and error in picking the first arrivals. Nevertheless, we expect the general trends of the 

relative resolvability of different anisotropic variables as revealed by several synthetic 

models will hold true. The inversion results need to be investigated with known 

geological understanding to verify that reliability.  
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CHAPTER 4: ERROR ANALYSIS OF ANISOTROPIC PARAMETER 

ESTIMATION BY A PRATICAL STRATEGY 

 

4.1 INTRODUCTION 

 

The difficulty in estimating the orientation and magnitude of the anisotropy in depth 

models affects the seismic imaging quality. In last chapter, a new TTI layered 

traveltime tomography is developed and testified successfully in several synthetic 

cases. However, inversions for all five anisotropic parameters together are impossible 

to provide reliable solution because each of parameters is controlled by the inversion 

results of other parameters. Therefore, it is necessary to find a practical strategy for 

estimating the parameter which has least sensitivity on the data errors (Jiang and 

Zhou, 2010). In this chapter, considering the varying ability to invert for different 

model parameters, I am searching for ways to invert only for some of the variables in 

such layered TTI models while fixing the other variables using their default values in 

particular acquisition geomotry. By applying the anisotropic layered traveltime 

tomography discussed in last chapter to a series of simple synthetic models, The  

analysis of the impacts of error in some of the model parameters on the inversion 

quality of the other parameters is discussed. Several experiments suggest that in 

crosswell acquisition geometry, axial velocity and ε should be considered for priority 

inversion variables, and consider δ as further inversion parameter when data coverage 

is sufficient. However, in VSP acquisition geometry, because most raypaths spread 

around 45°, δ can be considered as priority inversion parameter as well as axial 

velocity. 
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4.2 ERROR ANALYSIS OF ANISOTROPIC PARAMETER ESTIMATION 

 
 

Considering the varying resolvability for different TTI model parameters in traveltime 

inversion, we want to evaluate the influence of error in each of the TTI parameters on 

the inverted result of other parameters. Because in many applications the data 

coverage may not allow for reliable inversion of all the TTI parameters, our evaluation 

may lead to a practical strategy to invert for the most resolvable TTI parameters. The 

evaluation is facilitated by applying the new tomography method to a series of simple 

synthetic models. Since the true model is known, the synthetic tests allow us 

quantifying the relative ability to recover each of the TTI parameters in the presence of 

error in other parameters. 

 

To facilitate a meaningful comparison between the inversion errors of different model 

parameters, we define a normalized form of the error: 

 

 
true pred

range

 -   
Error  =   100%×

m m

m
 (4-1) 

 

where m
true

 stands for the true or observed value of the parameter such as the value of 

the true model in a synthetic test, m
pred 

stands for the predicted value from a model, 

such as the initial reference model, or the inverted value of the parameter. m
range

 stands 

for the possible range of the parameter in the inversion based on the known 

understanding (Thomsen, 1986; Tsvankin, 2001). In this study we assign a range of -

20% to +20% for both ε and δ, hence the denominator in Equation (4-1) is 0.4 for ε 

and δ. Without loss of generality, in the synthetic models of this study the range for 

the axial velocity of each layer is from 1 to 4 km/s, and the range of the tilted angle of 

the symmetry axis is from -50° to +50°. Since Thomsen’s parameters are represented 
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by the ratios of velocities and the size of errors for inherent anisotropy scale, the 

parameter m
range

 is specified to quantify how sensitive of each parameter is affected by 

errors from other parameters. In this study, we use Equation (4-1) to quantify errors in 

the initially referenced model parameters, and we also use the absolute value of 

Equation (4-1) to quantify the impact of errors in each parameter on the inversion 

results of other parameters.        

 

 

4.2.1 Error analysis of parameter estimation in a 2D simple TTI model  

 

 

I start using a simplest case of a 2D TTI tomography in a block model with analyzing 

different anisotropic parameters. Those two model shown in Figure (4-1) but they are 

exactly same with Figure (3-7). 
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Figure 4-1: Two seismic recording geometries and their relative raypaths in a single 

block model. (a) Crosswell geometry. (b) Crosswell plus VSP geometry. The triangle 

indicates the source, and the star indicates the receiver. 
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Though δ is one of the significant parameters describing velocity anisotropy (e.g., 

Thomsen, 1986; Berryman et al., 1999), it is questionable weather δ can be reliably 

inverted using conventional acquisition geometry, such as crosswell acquisition 

geometry.  Here I analyze the impact of errors in δ on the inversion of other 

parameters by TTI layered traveltime tomography. By setting δ to zero value in the 

true model but using different δ values in the initial reference model, we invert for the 

axial velocity, ε, and the tilted angle φ together. The error of δ is the difference 

between its values in the true model and the reference model, and this behaves as a 

defined noise to the inversion of the other model parameters. Table (4-1) and (Table 4-

2) show the statistic errors from tests of the TTI traveltime tomography using different 

levels of the noise in δ. Even when the noise in δ approaches from 10% to 20%, it 

causes only 1.1% error in the inverted value for the axial velocity, 0.8% error in the 

inverted value for ε, and 0.6% error in the inverted value for the tilted angle φ in the 

case of crosswell recording geometry. In the case of crosswell plus VSP recording 

geometry, the inverted error is reduced to 0.7% in the axial velocity, 0.5% in the ε 

value, and 0.6% in the tilted angle φ. These results indicate that the error in δ may not 

bring large impact on the inversion results of other parameters in such cases with wide 

angle coverage of ray paths.  

 

The symmetry axes of the TTI anisotropy may be altered due to thrusting and other 

deformations. Since I assume an variable symmetry axis for each model layer, 

additional errors in the symmetry axis may occur. Here I consider the impact of noises 

in the tilted angle φ of the symmetry axis on the inversion results of other parameters. 

We assign 10% error in the tilted angle φ and invert for the axial velocity, ε and δ 

together. Using the crosswell recording geometry, this 10% noise in the tilted angle φ 

can cause 1.7% error in the inverted axial velocity, 3.8% error in the inverted ε, and 
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18.3% error in the inverted δ. Using the crosswell plus VSP geometry, due to the 

improved ray coverage with more ray paths along 45° angle (for δ) and near-90° angle 

(for ε ), 10% noise in the tilted angle φ caused only 0.2% error in the inverted axial 

velocity, 0.8% error in the inverted ε value, and especially 2.5% error in the inverted δ 

value which has been significantly decreased. This synthetic tests suggest that the 

axial velocity and ε may not be largely affected by the errors from tilted angle of 

symmetry axis or δ, they could be considered as primary parameters to estimate with 

crosswell acquisition geometry. Since δ brings less error on estimating other 

parameters and it is only sensitive when ray angles are around 45°, δ may be estimated 

last for crosswell geometry. 

 

 

 Table 4-1: Inversion errors using four levels of noise in δ with the crosswell 

geometry. 

 

Inversion errors of other 

parameters 

δ in the true 

model 

δ in the initial 

reference 

model 

Given error 

of δ 

  Vp0  ε    φ 

     0.10    - 25.0%  1.1%  0.8%  0.6% 

     0.05    - 12.5%  0.5%  0.5%  0.8% 

    - 0.05     12.5%  0.5%  0.5%  0.2% 

 

     0.0   

    - 0.10     25.0%  1.1%  1.0%  0.5% 

 

 

Table 4-2: Inversion errors using four levels of noise in δ with the crosswell plus VSP 

geometry. 

 

Inversion errors of other 

parameters 

δ in the true 

model 

δ in the initial 

reference model 

Given error of 

δ 

Vp0 ε φ 

0.10 - 25.0% 0.7% 0.5% 0.6% 

0.05 - 12.5% 0.3% 0.3% 0.5% 

- 0.05 12.5% 0.3% 0.3% 0.6% 

 

0.0 

- 0.10 25.0% 0.4% 0.5% 0.8% 

 



 

                                                                    32 

 

 

4.2.2 Error analysis of parameter estimation in 2D layered TTI model  

 

To quantify the effects of errors in the TTI parameters, we repeated the layered 

tomography inversion which has same layer geometry with Figure (3-10) for ε and δ 

under different assumptions for the tilted angle of the symmetry axes, but using the 

known layer geometry and axial velocities. The true ε and δ are set to ε = {0.18; 0.14; 

0.12} and δ = {0.17; 0.13; 0.09} from top to bottom layer. The error in the tilted angle 

of the symmetry axes can be considered  as pre-defined noise in the data space. The 

true model is the same as in Figure (3-11) with the tilted angle is 20°, -20°, 0° from the 

top to the bottom layers (Figure 4-2). The error of φ increases from 0° (VTI) to 10% 

for the first two layers in the reference models of four synthetic tests. Table (4-3) 

shows the influence of the error in φ on the inverted results of parameters ε and δ, 

where each inverted error is the average of the inverted errors of the three model 

layers. 10% error in φ brought 4% average error in the inverted ε value, but up to 12% 

average error in the inverted δ value. The large error is disappointed because from 

general sense δ  should be easier to resolve than ε in VSP setting. However, this test 

illustrates that tilted angle of symmetry axis could give large impact for inverting 

anisotropic parameter. Simply treating media as VTI can simplify the processing step 

and save computation time either in tomography or depth migration, but bring more 

errors on final results.   
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          Figure 4-2: Velocity model for testing of error analysis. 

 

         Table 4-3: The influence of noise in φ on the inverted values of ε and δ. 

Inversion errors of other 

parameters 

 

φtrue [°]  

 

φinit [°]  

  Given   error of φ 

ε δ 

 20; -20; 0  0% 0.0% 0.0% 

 15;  -15; 0  5%          2.1% 9.5% 

 

{20; -20; 0} 

 10;  -10; 0 10%          3.8% 12.5% 

 

 

To estimating anisotropic parameter, different acquisition offsets can provide different 

aspects (Yuan et al., 2002). Generally, shot-spread offset, such as, the offset equals to 

the depth of deepest receiver, is used for determining check shot velocity, or axial 

velocity. Intermediate offset is good for determining moveout velocity which is 

Vmoueout=Vp0(1+2δ). Therefore parameter δ could be iteratively resolved. Because 

parameter δ is couple with axial velocity, any errors from measurement on axial 

velocity Vp0 will result in instability for building δ model. Long-offset (the ratio of 

offset verse depth is greater than four) is good for estimating parameter ε since most 

ray will travel horizontally. In either case, the discussion of analytical kernels in 

Chapter 3 declares that axial velocity will be most resolvable and most-error tolerant 

parameter to be estimate as priority parameter. The errors in axial velocity are 

considered as noises in the data space. After tenth iteration of tomography, we notice 

that even 5% errors in axial velocity will bring more than 10% errors for ε and more 

than 15% errors for δ. This experiments shows that axial velocity could play the most 

important role in estimating any other parameters. The comparison between different 

kernels on varying ray angles (Fig 3-1) shows that even at ray angle 45°, where the 

peak magnitude of kernel δ presents, the peak magnitude of axial velocity is still five 

to six times greater than δ. Either reason will make inverting for δ difficult. However, 

in VSP acquisition geometry, velocity along well-bore are typically known and can be 
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measured directly. This provides good opportunity to estimate ε and δ together from 

layered traveltime tomography.   

 

4.2.3 Error analysis of parameter estimation in 3D layered TTI media 

 

To examine the error effects on the inversion result by 3D TTI inversion, a synthetic 

model is constructed with four TTI layers and each layer has different anisotropic 

parameters. The tilted symmetry axis is assumed to be perpendicular to bedding. 

Figure (4-4) shows raypaths from many surface sources to a receiver in the wellbore 

for both an isotropic model and a TTI model examined in this test. Table (4-4) shows 

the results of layered anisotropic estimation by inverting ε and δ simultaneously. The 

large number of 1004 sources from different azimuth directions improves the ray 

coverage. The average inversion error for ε is 0.5% and for δ is 0.61% which are in 

same error level. The minor differences between the true parameters and estimated 

parameters are expected and are caused primarily by deficiencies in ray coverage 

along certain angles. Although this test shows the good capability to recovery the 

layered parameters, any incomplete ray coverage will make it very difficult to recover 

all the anisotropic parameters. In this case, because of large offset (the ratio of offset 

verse depth is close to five), parameter ε and δ can be resolved accurately. 
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                   (a)  

                   (b)  

                    (c)  

Figure 4-4: 3D ray tracing in isotropic and TTI media. (a) Model geometry and 

distributions of surface sources (stars) and in-wellbore receivers (solid triangles). (b) 

Raypaths (dashed lines) in isotropic reference model from one receiver located in the 

third layer. (c) Raypaths in synthetic TTI model with assumption of tilted symmetry 

axis perpendicular to layer interface.   
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  Table 4-4: 3D layered anisotropic parameter estimation by inverting ε and δ together. 

 

   True model  Reference model     Inverted model       

      ε       δ       ε       δ        ε        δ 

   Layer1 0.12 0.03 0.0 0.0 0.119 0.029 

   Layer2 0.14 0.05 0.0 0.0 0.140 0.057 

   Layer3 0.16 0.07 0.0 0.0 0.163 0.065 

   Layer4 0.18 0.09 0.0 0.0 0.180 0.091 

 

How the errors of layer geometry effect on the different inversion parameters? The 

following experiment testifies that the dependence of inversion parameter ε and δ on 

the layer geometry. Figure (4-5) shows the tomographic inversion for ε and δ when 

layer geometry in reference model is deviated from true model. In this test, the second 

layer is moved up and the third layer is moved down about 10% of the total depth. 

Each layer has constant velocity and the tilted angle of symmetry axis is perpendicular 

to layer bedding in each location. 

 

                    

(a) True model (b) Reference model

 

Figure 4-5: The different layer geometry setups. (a) True model; (b) Reference model. 

In (b), the second layer is moved up and third layer is moved down about 10% of 

vertical depth. The first layer is same with true model.  
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       Table 4-5: The inversion result with deviated layer geometry. 

   True model  Reference model     Inverted model       

      ε       δ       ε       δ       ε    δ 

   Layer1 0.18 -0.11 0.0 0.0 0.192 -0.123 

   Layer2 0.14 -0.09 0.0 0.0 0.141 -0.173 

   Layer3 0.10 -0.07 0.0 0.0 0.037  0.170 

   Layer4 0.07 -0.05 0.0 0.0 0.089 -0.200 

 

From Table (4-5), the errors in layer geometry bring large influence on parameter δ. 

This indicates that to solve parameter δ accurately, good assumption of subsurface 

structure from well log data is needed. Xiao et al. (2005) denotes that the accuracy of 

estimated anisotropic parameter depends not only on the accuracy of the picked NMO 

velocity but also on the value of (ε-δ). The smaller the value of (ε-δ) and the value of ε, 

the higher the accuracy of estimated δ. Therefore, the more stable solution maybe 

inverted for elliptical anisotropic parameter η=(ε-δ)/(1+2ε), the derivation of analytical 

kernels for η is still an ongoing project.   

 

      4.3 A PRACTICAL STRATEGY FOR ANISOTROPIC PARAMETER 

ESTIMATION  

 

The above experiments show the different sensitivities of each anisotropic parameter 

on the colored-noise in different acquisition geometries. According to the analyses of 

statistic errors in different acquisition geometry, the strategy for determining 

anisotropic parameter can be summarized in Figure 4-6. The resolvability can be quite 

different depending on acquisition geometry and offsets. To obtain best reliability of 

building velocity model, a prior information from previous research or experience 

should guide to right direction.    
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Figure 4-6: A general workflow developed for layered anisotropic parameter 

estimation.  

 

 

   4.4 CHAPTER SUMMARY 

 

Our analysis indicates that inversion for the tilted symmetry axis of TTI models 

creates a new ambiguity in anisotropic seismic tomography. The error in the 

assumptions that the symmetry axis is vertical (VTI) or horizontal (HTI) may degrade 

the quality of the parameter estimation for TTI media and lead to significant 

distortions in the image quality. Error as noise in the layer velocity plays a critical role 

governing the qualities of overall inversion results. The assumption of 5% error in 

velocity will bring more than 10% error in the inverted ε value and 15% error in the 

inverted δ value that is unacceptable. Because δ is highly couple with axial velocity, 

any changes in axial velocity will magnify the errors shown in δ. In crosswell 

acquisition geometry, the inversion of δ is particularly unstable in comparison with 

that for the axial velocity and ε. However, an error in δ does not bring significant error 

on the inverted values of the velocity and ε in crosswell case which provides near-90° 

ray path and make ε is most sensitive with traveltime perturbation. Therefore, 

Layer 

Geometry 

z Layer 

Velocity 

Vp0 Horizontal Anisotropy 

ε 

(good in crosswell) 

Tilted Angle of 

Symmetry Axis 

φ 

45° Anisotropy 

δ 

(good in VSP) 

(first) Priority as inversion variables (last)             

(minimum)              Errors in inversion results                   (maximum)



 

                                                                    39 

assuming δ as constant value is a reasonable decision when no information is available 

about the type of the anisotropy in crosswell geometry. In VSP case, determining ε and 

δ become more difficult because those parameters are not only depending on the ray 

path coverage, but also on the derived check-shot velocity, predicted layer geometry, 

even different offsets. In either acquisition geometry, any gaps or deficiencies in 

raypath coverage could affect the resolution of the tomographic results, and the most 

effective solution is to use wide-azimuth data with a wide spread of sources and 

receivers. The choices on the complexity level of the anisotropic depth model and 

what parameters to invert depend on the available data quality, coverage, and study 

objectives. 
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CHAPTER 5: ANISOTROPIC PARAMETER ANALYSIS BY 

PRESTACK REVERSE TIME MIGRATION 

 

5.1 INTRODUCTION  

 

 

Reverse time migration (RTM) has been successfully applied to produce high images 

in recent years. It propagates source wavefield forward in time and the receiver 

wavefield  backward to image the subsurface reflector (e.g.: Baysal et al, 1983; 

McMechan, 1983; Whitmore, 1983). By using the two-way acoustic wave equation, 

RTM has no dip limitation. Also, it naturally takes into account both down-going and 

up-going waves and thus enables imaging of the turning waves and prism waves that 

are able to enhance the image of steep salt flank and other steeply dipping events with 

complex structures.  

 

Conventional isotropic RTM produces erroneous images and generates misposition of 

the dipping events in TI media. When multi-component data are available, the elastic 

RTM seems to be a proper treatment in anisotropic media. However, separating 

anisotropic wavefield into different wave modes for reflector imaging is difficult in 

terms of accuracy and efficiency. Rather than solving the complicated anisotropic 

elastic wave equation, many researchers focus on developing simple two-way wave 

equation to perform acoustic anisotropic RTM of pressure data (Alkhalifah, 1998).    

 

In this chapter, the image results of RTM generated by different assumptions of 

anisotropic parameters are discussed. Different estimations will influence the image 

results and bring difficulties on seismic interpretation. The conclusions of the impacts 
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of each anisotropic parameter on RTM agree with the conclusions from the error 

analysis by traveltime tomography. Each parameter will bring different impacts on 

migration results as well as on traveltime tomography. 

 

5.2 IMPLEMENTATION OF REVERSE TIME MIGRATION IN ANISOTROPIC 

MEDIA 

        

The regular procedure of anisotropic RTM is listed as: 

 

1. Estimating anisotropic parameters from surface data or well data;  

2. Preprocessing of seismic data;  

3.  Forward wave propagation from source; 

4. Backward wave propagation from receivers; 

5. Apply the zero-lag cross correlation imaging conditions; 

6. Stacked partial migrated results into final whole images. 

 

In this chapter, the influence of anisotropic parameters on migration results is 

analyzed. Each migration experiment follows the above processing procedure and 

shows some common issues on reverse time migration. 

 

5.2.1 Synthetic examples of prestack reverse time migration in anisotropic 

media 

 

To verify the anisotropic RTM algorithm for parameter analysis, several examples are 

conducted. Figure (5-1) shows a velocity model in TTI media. Following the 

processing step mentioned above and two-way acoustic wave equation (2-7), by 
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crosscorrelating between forward wavefield and backward wavefield (Figure 5-2), the 

RTM result is generated and showed on Figure (5-3).  
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Figure 5-1: TTI velocity model.   

 

              

Figure 5-2: Crosscorrelation between forward wavefield and backward wavefield. (a) 

forward wavefield at time t; (b) backward wavefield at reversed time (ttotal-t). The red 

box shows the location of the possible images could be formed. 

(a)(a) (b)(b)
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Figure 5-3: A single shot image generated by TTI RTM.  

 

Anisotropy will result in errors of subsurface strata and the reflection point could be 

imaged away from its true location. The following test shows an isotropic RTM 

implemented in a TTI media (Figure 5-4). In isotropic RTM, the first dipping reflector 

is imaged at shallower location and becomes curved at right side. It may bring 

difficulties on seismic interpretation if salt structure or reservoir presented.  

 



 

                                                                    44 

z

x

100 200 300 400 500

200

100

300

400

500

0

z

x

100 200 300 400 500

200

100

300

400

500

0

(a)

x

z

0 100 200 300 400 500

100

200

300

400

500
(b)

x

z

0 100 200 300 400 500

100

200

300

400

500

x

z

0 100 200 300 400 500

100

200

300

400

500
(b)

 

Figure 5-4: The comparison between isotropic RTM and anisotropic RTM. (a) 

Isotropic RTM; (b) Anisotropic RTM.  

 

5.2.2 The analysis of influence of anisotropic parameters by prestack 

reverse time migration 

 

In Chapter 4, a practical strategy for anisotropic parameter estimation is proposed. The 

different assumptions to estimate anisotropic parameter play an important role on the 

quality of migration process. In reality, it is impossible to construct all anisotropic 

parameters simultaneously and accurately, it is necessary to quantitatively analyze the 

influence of different parameters on the migration results. In the following, several 

experiments are conducted with different assumptions on anisotropic parameters. Each 

parameter brings different influences on the images, such as, without known the 

accurate model of anisotropic parameter δ, the imaging result still reasonable 

compared with the results migrated by the model if without known accurate ε. This is 

identical with the conclusions of anisotropy traveltime tomography in last chapter. The 

tilted angle of symmetry axis affects the reflector depth on steep dip boundary, but 

does not have large impact on flatten subsurface strata. Figure (5-5) shows a synthetic 

anisotropic velocity model and its migration results. The anisotropic parameters in 

each layer are shown on Table (5-1). The final image is stacked by partial images 
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generated from five common shot gathers. We notice that near the source locations, 

each source generates similar artifacts along receiver line. This is because the imaging 

condition of nature RTM algorithm between forward wavefield and backward 

wavefield, but it would not affect the image on the reflection strata. 

                 

x

z

0 5.0

3.0

Offset (km)
D

ep
th

 (
k

m
)

layer1

layer3

layer2

layer4

layer5

layer6

x

z

0 5.0

3.0

Offset (km)
D

ep
th

 (
k

m
)

layer1

layer3

layer2

layer4

layer5

layer6

 

               

x

z

0 5.0

3.0

Offset (km)

D
ep

th
 (

k
m

)

x

z

0 5.0

3.0

Offset (km)

D
ep

th
 (

k
m

)

 

Figure 5-5: (a) Synthetic anisotropic velocity model. (b) Depth image results stacked 

by five partial images.  
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                                Table 5-1: Anisotropic parameters in true model  

    Velocity (km/s)          ε          δ        φ(°) 

Layer1             1.5        0.13       0.13          0 

Layer2             2.0        0.17       0.12         10 

Layer3             2.5        0.15      -0.15         15 

Layer4             3.0        0.19      -0.13         30 

Layer5     3.5        0.18      -0.10         50 

Layer6             4.0        0.0        0.0          0 

 

        

5.2.2.1 The influence of δ on image quality 

 

The first test is to assume anisotropic parameter δ equal to zero in the model (Figure 5-

5), however, other parameters are same with true model. The shot gathers are 

generated with true anisotropic parameters. Figure (5-6) shows the partial image 

result. From Figure (5-6), even δ is inaccurate, the image quality displays good 

coherence with true model. The nature of δ describes that how the wave propagation 

deviates away from vertical direction. Therefore, δ will take critical effect when 

imaging for steeply dip reflector. Because δ is hard to estimate especially from surface 

data, we may assume δ as zero to start migration process first, the final result can be 

re-migrated if other information, such as well control, is available.  
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Figure 5-6: The influence of δ on image result. (a) Depth image with all true 

parameters; (b) Depth image when δ = 0.  
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5.2.2.2 The influence of ε on image quality 

 

Figure (5-7) shows RTM results if ε is assumed to be zero. Unlike parameter δ, 

predictive ε value brings large errors on the image result. The nature of ε illustrates 

that the fractional velocity difference between horizontal and vertical direction. 

Ignoring ε means the velocity field will be treated as same at horizontal and vertical 

direction, which becomes near-isotropic. In this view of point, ε plays a very important 

role on both traveltime tomography and migration process. It should be considered as 

priority parameter to get resolved.    
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Figure 5-7: The influence of ε on image equality. (a) Anisotropic image with all true 

parameters; (b) Anisotropic image when ε = 0; (c) Isotropic image.  

 

5.2.2.3 The influence of tilted symmetry axis on image quality 

 

When ignoring tilted angle φ, TTI media will become VTI media. The tilted angle φ 

controls the fast direction of wave propagations, ignoring it will result in the deviation 

on the vertical depth and dipping angle of imaged reflectors. Figure (5-8) shows the 

two depth images with different assumptions of tilted angle φ. The two cross points 

point out that if ignoring tilted angle of symmetry axis in anisotropic media, the 

reflector point will be imaged away from its true location and the final reflector will 

display errors from true location of subsurface strata.            
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Figure 5-8: The influence of tilted symmetry axis on image quality. (a) Depth image 

with TTI assumption; (b) Depth image with VTI assumption. The dashed cross-lines 

marked the difference from two different migration algorithms. The most influenced 

area by tilted symmetry axis is the steeply dipped reflector, the flatten area is hardly 

affected by tilted symmetry axis.    

 

5.3 Challenges on anisotropic reverse time migration 

 

With increasing power of computer hardware, RTM has become one of popular 

industry scale processing procedures. However, the nature of RTM depends on the 

forward propagation and backward propagation, even in isotropic media, it requires 

two times computational time and memory allocation than other one-way wave 

equation migration algorithms. In anisotropic media, RTM requires even more space 

for memory allocation and large storage for storing forward wavefields (Jin et al., 

2010). Comparing with other migration algorithms, although anisotropic RTM 

naturally takes into account both down-going and up-going waves and thus enhance 
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the image of steep salt flank and steeply dipping events with complex structures, the 

additional considerations need to spend on memory allocation and wavefield storages.  

Another concern is stability condition. Although pseudo-spectral approach avoids 

frequency dispersion and provides dispersion-free wavefield, the application of 

pseudo-spectral approach on anisotropic RTM needs more computation time and 

memory space for Fourier Transform. Therefore, finite difference becomes regular 

propagator for anisotropic RTM. To avoid frequency dispersion and instability of 

wave propagation, additional stability condition needs to be considered. However, 

different anisotropic wave equations requires different stability conditions (Zhang and 

Zhang, 2008; Jin et al., 2010).  

 

5.4  SUMMARY 

 

This chapter briefly reviewed the theory governing the prestack reverse time migration 

in anisotropic media. Some synthetic examples validate the algorithm of anisotropic 

RTM compared with isotropic RTM. By taking anisotropic algorithm into account in 

migration schemes, the images can be substantially improved when anisotropy is 

present. To implement the RTM in anisotropic media, we first need to obtain the data 

of forward wave propagation. By propagating seismic recorded data from receivers in 

reversed time order, a zero-lag cross correlation imaging condition is applied to 

generate the partial migrated image. Stacking each partial migration images result in 

the final images. 

 

The analysis of each anisotropic parameter on the image quality agrees with the 

conclusions of the parameter estimation by traveltime tomography. Anisotropic 

parameter ε represents the velocity differences between horizontal direction and 

vertical direction, ignoring it will simplify anisotropic media as pseudo-isotropic 

media. The quality of images will be significantly degraded when ignoring ε. 
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Parameter δ represents that how wave propagation deviates from vertical direction. In 

most cases δ has smaller value (Thomsen, 1986) than ε and the deviation is always 

small compared with the vertical velocity, therefore δ bring less influence on 

migration results than ε. The tilted symmetry axis controls the fast direction of wave 

propagations, ignoring tilted angle will result in errors on the reflector depth and 

dipping angles, especially on steeply dipping reflector. However, for near-flat 

subsurface strata, tilted symmetry axis will not spend large impact and generate 

acceptable results for seismic interpretation. The priorities of each anisotropic 

parameter agree with the error analysis of traveltime tomography. The analyses can be 

considered as a practical strategy for constructing anisotropic velocity model and 

provide potential processing steps for seismic anisotropic imaging.     
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                                         CHAPTER 6: CONCLUSIONS 

 

This dissertation has focused on the depth domain anisotropic parameter estimation 

and its influence on the inversion results. The analysis of anisotropy in depth domain 

can be found in categories: anisotropic traveltime tomography and anisotropic depth 

migration. The principle of each approach has been reviewed and several experiments 

demonstrated that the influence of anisotropy on velocity model building and seismic 

migration. 

 

To conduct with anisotropic parameter estimation, the forward modeling algorithms 

are needed to generate synthetic data for accuracy and efficiency tests. Forward 

modeling schemes can be divided into two categories: ray tracing and waveform 

propagation. In this dissertation, shortest path ray tracing approach has been extended 

to incorporate with anisotropic effect. By introducing tilted angle φ of symmetry axis, 

the first arrivals can be directly calculated by this algorithm and considered as input 

data for first arrival traveltime tomography. Seismic waveform modeling has been 

extended from isotropy to anisotropy recently. Although waveform modeling provides 

several useful properties of subsurface strata, such as amplitude and phase polarity, to 

consider as proper anisotropic forward modeling algorithm to generate first arrivals in 

this dissertation, it shows low efficiency than anisotropic ray tracing. However, it is 

necessary for waveform tomography which is promising future research topic.   

 

To construct anisotropic velocity model, an anisotropic layer tomography has been 

developed. The inversion kernels can be derived by the derivatives of TTI traveltime 

equation on anisotropic parameter. Each analytical kernel displays the different 

sensitivities of anisotropic parameter on different acquisition geometries, or incident 

ray angles. For example, the kernel for parameter ε reaches to a high-magnitude peak 

when ray angle approaches to 90°. This scenario indicates that ε is most resolvable 
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using ray paths around the horizontal direction, or perpendicular to the tilted symmetry 

axis. In contrast, the kernel for parameter δ reaches to a low-magnitude peak value 

around ray angle 45°, this indicates that δ can be resolved when using rays along this 

direction. However, the low magnitude means that it is hard to be resolved in the 

presence of noise. The kernel for tilted angle φ reaches to a broad peak with 

intermediate magnitude between ray angle 60° and 80°, indicating it has a similar 

sensitivity trend but less tolerant to noise in comparison with that for ε.       

 

Layer tomography can be applied when stratigraphy is easy to identify from priory 

geological information. It provides less inversion variables and avoids the smearing 

artifacts generated by cell or grid tomography. Substituting isotropic velocity kernel 

with derived anisotropic kernels, the anisotropic layer tomography can be developed. 

In each layer, the inversion parameters can be a combination of constant anisotropic 

parameter ε and δ, axial velocity, tilted angle of symmetry axis or thickness-varying 

layers. By applying conjugate gradient scheme as inversion operator, each of 

anisotropic parameter can be inverted successfully. In TTI media, the inversion 

analysis indicates that inversion for the tilted symmetry axis of TTI models creates a 

new ambiguity in anisotropic seismic tomography. The error in the VTI or HTI 

assumptions may degrade the quality of the parameter estimation for TTI media and 

lead to significant distortions in the image quality.    

 

However, inverting for five parameters together will result in nonuniqueness and make 

result unstable. In this dissertation, I develop a practical strategy to invert for most 

error-tolerant parameter; the parameter which has least error-tolerant property will be 

treated as last inversion parameter. The inversion of δ is particularly unstable when 

comparing with that for the axial velocity and ε in TTI media. However, an error in δ 

does not bring significant error on the inverted values of the velocity and ε. Therefore, 

assuming δ as zero when inverting for other parameters is a reasonable decision if no 
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information available about the type of the anisotropy. Although axial velocity and ε 

are relatively easy to invert, any gaps or deficiencies in ray path coverage could affect 

the resolution of the tomographic results, and the most effective solution is to use 

wide-azimuth data with a wide spread of sources and receivers. Even through, the 

choices on the complexity level of the anisotropic depth model and what parameters to 

invert depend on the available data quality, coverage, and study objectives. 

 

The analysis of anisotropic parameter on prestack migration results indicates the 

similar trend of the importance of each parameter on the image with the priority 

analysis from traveltime tomography. The nature of parameter ε represents the 

fractional difference between horizontal velocity and vertical velocity. When 

assuming ε as zero for anisotropic migration, it will ignore the difference between two 

orthogonal velocities and treat the model as pseudo-isotropic model (δ still exists). By 

applying anisotropic data, the imaging quality can be seriously degraded. However, δ 

is used to quantify how much the direction of wave propagation deviates from vertical 

direction. In most cases δ has small value and it is not related with horizontal velocity, 

or fast velocity direction in VTI media, ignoring δ will not bring large error compared 

with ε. For near-flat subsurface strata, tilted symmetry axis will hardly generate large 

error impact on seismic interpretation. Overall, each anisotropic parameter play 

different role in velocity model building and depth migration. A proper method to 

increase anisotropic solution stability may refer to limit the size of inversion 

parameters resulting less underdeterminacy or perhaps assume a more restricted nature 

of anisotropic media, such as elliptical anisotropy.  

 

Though a proper treatment of anisotropic estimation scheme can bring expected results, 

sparse and irregular data acquisition, incomplete illumination of subsurface strata and 

erroneous data with low signal-to-noise ratios may result in incorrect estimates 

especially in field data. For example, irregular acquisition can limit the range of ray 
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coverage and result in deficiencies in ray path direction, low signal to noise ratio will 

increase the difficulty and error in picking the first arrivals. Another limitation on this 

approach is that it is good for limited thickness-varying layers, such as less than eight 

or ten layers, more layers will bring more inversion variables to make whole inversion 

matrix underdeterminacy, which could be overcame by providing S-wave data or 

converted data, or move to apply seismic waveform tomography. This could be one of 

the promising and encouraging research topics.   
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APPENDIX A: THE SUBROUTINES OF CALCULATING TRAVELTIME IN TTI 

MEDIA 

 

To calculate the traveltime in TTI media, Equation (2-4) is applied in shortest path ray 

tracing algorithm, the following shows the codes to calculate traveltime from each 

nodes: 

 

From j = (0, …, number of forward nodes) 

          

          { 

             

          /*local length between tow nodes*/ 

            lnnew = getln_nds (ornew[j], ifwd, -1);      

       

          /*calculating traveltime between two nodes in block jbk*/ 

           dtnew  =  lnnew *  

                     sw_tti_sin (nodes[ornew[j]].x-nodes[ifwd].x,  

                                        nodes[ornew[j]].z-nodes[ifwd].z,jbk); 

 

                 } 

 

double getln_nds (ind, sd, iso) /* length between nd[ind] & nd[sd] */ 

int ind, sd, iso; 

{ int ix, iy; 
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   if (sd>=0 && sd < mm-1)  

           {  

            /* source is a predefined node */ 

             return ( sqrtnorm2 (nodes[sd].x   -   nodes[ind].x, 

                                             nodes[sd].z   -   nodes[ind].z) ); 

            } 

   else if (sd == mm-1)  

           {  

           /* real source */ 

              return ( sqrtnorm2 (nodes_sor[iso].x  -  nodes[ind].x, 

                                              nodes_sor[iso].z  -   nodes[ind].z) ); 

           } 

            errmsgexit("getln_nds: sd >= mm"); 

} 

 

 

 float sw_tti_sin (float dx, float dz, int ibk) 

{   

   double slowness; 

   double DEL, EPS; 

   double arg, sin4a, sin2a; 

   int jz ;   
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   double dot, len, sin1, cos1; 

 

    /* The layer which the node is located on */ 

jz  = ibk/NXS;             

 

/* Distance between two nodes  */            

    len = sqrt( dx * dx + dz * dz  ); 

  

    /* First, calculate sine value of incident angle */   

    if (len > 0.0 )  

      { 

      sin1 = dx/len; 

      cos1 = dz/len; 

      } 

 

    /* Calculate sin(θ-φ) */ 

     dot =  sin1 * cos( angle[jz] * DAR) - cos1 * sin( angle[jz] * DAR); 

 

    /* Calculate pseudo-Pwave slowness */ 

   sin2a = dot * dot ; 

   sin4a = sin2a * sin2a ; 

    

   DEL = - 2.0 *  delta[jz] * sin2a ; 
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   EPS  =   2.0 * (delta[jz] - epsilon[jz])  * sin4a ;  

   arg = 1.0 + DEL + EPS ; 

   slowness = slowness[jz] * sqrt (arg); 

   return (slowness) ; 

} 
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APPENDIX B: THE SUBROUTINES OF CALCULATING FRECHET TTI 

KERNELS 

 

The Frechet kernels can be derived by first derivatives of Equation (2-4) on different 

anisotropic parameters. The index number is setup for identifying different inversion 

parameters, such as: 

Index 1 stands for inverting for all of parameters; 

Index 2 stands for inverting for layer geometry; 

Index 3 stands for inverting for axial velocity; 

Index 5 stands for inverting for parameter δ; 

Index 7 stands for inverting for parameter ε; 

Index 11 stands for inverting for tilted angle φ. 

Index 2 to Index 11 can be combined arbitrarily to invert for different combinations of 

anisotropic parameters. 

The following subroutines illustrate that how to calculate Frechet TTI kernels in 

traveltime tomography: 

 /* Find kernel[ray.nl] */ 

  ray.nl = 0; 

  for(tt0=0.0, j=0; j<nry-1; j++) { 

    lene = sqrtnorm2(ry[j].x - ry[j+1].x, 

           ry[j].z - ry[j+1].z); 

     x = 0.5 * (ry[j].x + ry[j+1].x); 

     z = 0.5 * (ry[j].z + ry[j+1].z); 

  ibk = xzgetbk1_fst(x, z); 

               jz = ibk/NXS; 
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     swn0     = sw_md[jz]; 

    delta0     = delta_md[jz] ; 

    epsilon0 = epsilon_md[jz] ; 

    angle0   = angle_md[jz]; 

 

    /* Calculate Analytical Kernel Expression based on Equation (3-1) to (3-4) */  

   /* First, calculate sine value of incident angle*/   

   if (lene > 0.0 )  

            { 

             sinn = (ry[j+1].x-ry[j].x)/lene; 

             cosn = (ry[j+1].z-ry[j].z)/lene; 

             } 

 

      dott =  sinn * cos(angle_md[jz] * DAR) - cosn * sin(angle_md[jz] * DAR); 

 

       sin2a = dott * dott ; 

       sin3a = sin2a * dott ; 

       sin4a = sin2a * sin2a ; 

        cosa = sqrt(1-sin2a);  

          tga = sin(angle_md[jz] * DAR) / cos(angle_md[jz] * DAR) ; 

    

    part1 = 2 * delta0 * dott * (sinn*tga+cosn*cos(angle_md[jz] * DAR)) ; 
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    part2 = 4 * (epsilon0-delta0) * sin3a * (sinn*tga+cosn*cos(angle_md[jz] * DAR)); 

   

    cor = sqrt( 1 - 2 * delta0 * sin2a + 2 * (delta0 - epsilon0) * sin4a ) ; 

    

   if ( index[jz]%3 == 0 )     /* invert for axial velocity*/ 

    { 

      ker_s[ray.nl].r = lene * cor ; 

      ker_s[ray.nl].i = jz * 4; 

            ray.nl++;    

    }  

 

   if ( index[jz]%5 == 0  )    /* invert for parameter δ*/ 

    { 

      ker_s[ray.nl].r = (lene * swn0 * (sin4a - sin2a)) / cor ;       

      ker_s[ray.nl].i = jz * 4 + 1 ;   

     ray.nl++;           

    }   

 

    if ( itf_var[jz]%7 == 0  )       /* invert for parameter ε */ 

    {  

      ker_s[ray.nl].r =   (- (lene * swn0 * sin4a) / cor ) ; 

      ker_s[ray.nl].i = jz * 4 + 2; 

     ray.nl++;   



 

                                                                    8 

    }   

 

      if ( itf_var[jz]%11 == 0  )                /* invert for tilted angle φ*/ 

    {  

      ker_s[ray.nl].r  = (lene * swn0 * (part1 + part2))/cor ; 

      ker_s[ray.nl].i = jz * 4 + 3; 

     ray.nl++;   

    }   

 

       sw0[j] = sw_md[jz] ; 

      del0[j] = delta_md[jz]; 

      eps0[j] = epsilon_md[jz]; 

      ang0[j] = angle_md[jz];   

 

      dt0[j] = lene * sw_tti_angle(ry[j+1].x-ry[j].x, ry[j+1].z-ry[j].z,  

                                 sw_md[jz], delta_md[jz], epsilon_md[jz], angle_md[jz]);   

        tt0 += dt0[j]; 

  } 

 

 

To calculate the layer geometry kernels, we use numerical calculation to perform: 

      if (index[jz]%2 != 0) continue; 
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    /* perturbing the node up-down to get derivatives */ 

       tt0m = tt0 - dt0[j-1] - dt0[j]; 

       lenf =   sqrtnorm2( ry[j-1].x -  ry[j].x, 

                           ry[j-1].z  - (ry[j].z + dZSEG)); 

       lene =   sqrtnorm2( ry[j+1].x -  ry[j].x, 

      ry[j+1].z - (ry[j].z + dZSEG)); 

         

 tt1 = tt0m + lenf * sw_tti_angle( ry[j-1].x -  ry[j].x, 

                                                      ry[j-1].z -( ry[j].z + dZSEG), 

                                     sw0[j-1],del0[j-1],eps0[j-1], ang0[j-1])     +  

                     lene * sw_tti_angle( ry[j+1].x -  ry[j].x,  

                                                       ry[j+1].z - (ry[j].z+dZSEG),  

                                      sw0[j],del0[j],eps0[j], ang0[j]); 

 

    if (tt1 == tt0) continue; 

 

    dtdz = (tt1 - tt0) / (double)dZSEG; 

 

float sw_tti_angle (float dx, float dz, float swn,float delta4, float epsilon4, float angle4) 

{     

   double slowness; 

   double DEL, EPS, dot; 

   double arg, sin2a, sin4a, sin1, cos1; 
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    float len ; 

 

    len = sqrt( dx * dx + dz * dz  ); 

   

  if (len > 0.0 )  

       { 

         sin1 = dx/len; 

        cos1 = dz/len; 

        } 

          dot =  sin1 * cos(angle4 * DAR) - cos1 * sin(angle4 * DAR); 

 

   sin2a = dot * dot ; 

   sin4a = sin2a * sin2a ; 

   DEL = - 2.0 * delta4 * sin2a ; 

   EPS = 2.0 * (delta4 - epsilon4)  * sin4a ;  

   arg = 1.0 + DEL + EPS ; 

   slowness = swn * sqrt (arg); 

   return (slowness) ; 

} 

 

   

 

 


