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Summary 
 
Interpreting seismic data enhances understanding of subsurface geological features, particularly for assisted fault 

interpretation. The results of assisted fault interpretation workflows can provide valuable information to optimize 

hydrocarbon production during drilling and stimulation treatments. However, given the complexity of seismic 

data such workflows can generate incorrect or misleading interpretations, such as discontinuous fault segments 

and mispositioned fault planes, particularly when deep-learning convolutional neural networks are used. Fault 

extraction results often face difficulties locating the fault plane where low reflectivity or signal-to-noise ratio 

exists. In this abstract, a novel approach is introduced that implements a super-resolution generative adversarial 

network to help improve the resolution of fault prediction results. Synthetic fault data were generated to train an 

adversarial model, which was then applied to different field data sets. This approach could serve as a standard 

post-processing workflow to decrease the uncertainty as part of an assisted fault interpretation approach and 

provides an efficient method of helping improve the fidelity of fault prediction results. 
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 Introduction 

Deep learning-based approaches to automatic fault detection have grown more popular during the 

previous few years, demonstrating the potential to save significant interpretation time for geoscientists. 

However, fault prediction results from deep learning are often characterized by low resolution fault 

probability volumes that can extend a fault plane image out of its true range. Additionally, the low 

resolution of these fault prediction results smears the area where to locate the true fault. Clarifying these 

data using a traditional amplitude threshold scheme (Ferguson et al., 2010) could reject useful fault 

information, resulting in an incomplete fault segment. In this abstract, a weighted generative adversarial 

network (GAN) is implemented to help improve the fidelity of fault prediction results. 

GANs (Goodfellow et al., 2014) are deep neural net architectures composed of two networks: the 

generator, which generates new data instances, and the discriminator, which evaluates them for 

authenticity. This adversarial model can automatically discover and learn the patterns in input data and 

mimic data distribution. GANs have been implemented in exploration geophysics to help geoscientists 

better understand subsurface structures and provide useful information for seismic interpretation. 

Alwon (2018) demonstrated the applicability of GANs for seismic processing by performing 

applications such as noise attenuation and trace interpolation. Picetti et al. (2018) also demonstrated the 

application of GANs for seismic imaging by showing that they can help turn low-quality migrated 

images into high-quality images, as if the acquisition geometry were much denser than in the input. 

GANs can also help turn a migrated image into the perspective deconvolved reflectivity image. Lu et 

al. (2018) presented an application that used GANs to sharpen seismic images before a fault 

identification workflow by helping eliminate blurry clouds of low probability values. Ledig et al. (2016) 

introduced a super-resolution approach using a GAN to improve the resolution of photo images. During 

their training, a high resolution (HR) image is downsampled to a low resolution (LR) image. A GAN 

generator then upsamples the LR images to super-resolution images. 

In this abstract, a super-resolution GAN system is trained with synthetic fault labels. The trained GAN 

is applied to a field data set to clarify the fault probability map and help improve fault prediction 

accuracy. An image histogram equalization matrix is added to scale up the weak amplitude of the local 

patterns. The scaled GAN is able to enhance the weak features whilst keeping the strong features in an 

adversarial model. This approach can be implemented as a post-processing workflow to help eliminate 

the cloudy effects where low probability exists and help improve the resolution and clarify the fault 

probability map. This GAN model was applied to different field data sets, improving the resolution of 

their fault probability maps. 

Method 

The workflow used is designed in two steps. The first step involves model training, which uses synthetic 

fault plane data, or HR images (HRI), with the exact fault position known to train the adversarial model. 

The generator takes downsampled synthetic fault planes, or LR images (LRI), as input and generates 

new fault planes, or super-resolution images (SRI), that are then fed into the discriminator alongside 

HRI. The discriminator attempts to authenticate a group of SRIs compared to a group of HRIs 

(Figure 1). Both networks attempt to optimize a different and opposing objective function as a minimax 

game, or zero-sum noncooperative game. At the end, when the discriminator and generator reach a Nash 

equilibrium (Nash, 1950), the discriminator is unable to distinguish SRI from HRI, and the adversarial 

model is successfully trained and saved for further processing. 
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Figure 1 Flowchart of super-resolution GAN to distinguish fault planes. Blue diagram shows the 

second step to helping predict the super-resolution fault probability map. 

The difficulty in training a GAN is attributed to the loss function of the GAN architecture. The GAN 

can train two networks—the generator and discriminator—simultaneously. The discriminator model is 

updated as a normal deep-learning neural network; however, the generator uses the discriminator as the 

loss function, which is implicit and learned during the training process. During training, the generator 

loss is the sum of content loss and pixel-to-pixel mean loss using the mean square error (MSE) between 

the HRI and SRI. The perceptual loss function, which is vital for the performance of the generator 

network, is designed as 

𝐿𝑜𝑠𝑠𝑆𝑅𝐼=𝑙𝑜𝑠𝑠𝑆𝑅𝐼𝑀𝑆𝐸+α*𝑙𝑜𝑠𝑠𝐴
𝑆𝑅𝐼
𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙

where α is a weighting factor. Here: 

𝑙𝑜𝑠𝑠𝑀𝑆𝐸
𝑆𝑅𝐼  = 1

𝑟2∗𝑤∗ℎ
∑ ∑ (𝑓𝑎𝑢𝑙𝑡𝑥,𝑦

𝐻𝑅𝐼 − 𝑓𝑎𝑢𝑙𝑡𝑥,𝑦
𝑆𝑅𝐼)2𝑟ℎ

𝑦=1
𝑟𝑤
𝑥=1

𝑙𝑜𝑠𝑠𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙
𝑆𝑅𝐼 =∑ −log⁡(𝑃(𝑓𝑎𝑢𝑙𝑡𝑆𝑅𝐼))𝑁

𝑛=1

where 𝑙𝑜𝑠𝑠𝑀𝑆𝐸
𝑆𝑅𝐼

 represents pixel-wise MSE loss function, w and h represent filter width and height, r is the 

downsampled factor, which is 4 in these tests, 𝑙𝑜𝑠𝑠𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙
𝑆𝑅𝐼

 represents the adversarial loss component, 

which helps the GAN favor solutions that reside on the manifold of natural images (Ledig et al., 2016), 

and 𝑃(𝑓𝑎𝑢𝑙𝑡
𝑆𝑅𝐼) is the probability the reconstructed fault plane is the same as the original fault planes, or 

HRI. 

The second step involves prediction where fault prediction data are applied as input for the adversarial 

generator model, which generates super-resolution fault data and enhances the probability map where 

low probability exists. The trained adversarial model can be applied to other survey areas without 

retraining. Therefore, this GAN architecture could serve as a standard workflow to decrease the 

uncertainty as part of an automatic fault interpretation approach and provides an efficient method of 

helping improve the fidelity of fault prediction results. 

Examples 

A synthetic data generator was implemented to generate synthetic fault planes to be used as training 

data to feed into the GAN model. During training, original fault data are imported to the discriminator 

while the degraded version of synthetic fault data are considered “fake fault data” and imported to the 

generator. When the discriminator is not able to distinguish fault data generated from the generator from 

the original fault map, the generator is saved as the final model. Next, that model is applied to a fault-

probability volume generated using a convolutional neural network (CNN) method to produce the final 

refined fault map. Figure 2 shows a synthetic example where this GAN approach helps successfully 

improve the image resolution and better identifies thin fault segments. 
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Figure 2 Implementation of a GAN for synthetic fault planes. Left: predicted fault planes from CNN; 

a fuzzy or cloudy effect can clearly be observed, which represents low probability of predicted fault 

planes. Middle: result of predicted fault planes after being processed by the GAN. Right: original true 

fault plane used as training data. 

The trained GAN model was further tested on a data set from offshore Australia (Indian 3D 2000 MSS). 

First, a deep-learning CNN was implemented to help predict 3D fault planes in this faulted area. The 

predicted 3D fault plane volume is then split into multiple small cubes (128×128×128) and used as 
input data to feed into the GAN model. Figure 3 shows a comparison of the fault prediction results 

before GAN and after GAN along an inline direction. It was observed that fault planes reconstructed by 

the super-resolution GAN produce much thinner and clearer segments. The fuzzy and cloudy effects 

are removed from the original prediction result, providing a clearer fault probability map.  

Figure 3 Comparison of (a) predicted fault planes by CNN and (b) super resolution of fault planes 
processed by GAN. The GAN successfully removes fuzzy and cloudy effects without loss of accuracy. 

Figure 4 Comparison of fault probability maps; (a) original map predicted using CNN; (b) map post-

processed by the trained GAN model. The GAN effectively reconstructed and improved prediction 

results, enhancing fault probabilities where low probability existed in the original.  
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 The trained GAN model can be applied to different survey areas to enhance the resolution of fault 

prediction results without retraining. Figure 4 shows another test example on the OPUNAKE3D data 

set from the Taranaiki basin offshore New Zealand. The trained GAN model was again directly applied 

to fault prediction results generated using a deep-learning method. Figure 4(a) shows original prediction 

results from the deep-learning neural network. The fault probability map ranges from 0.4 to 1.0 with 

variable rainbow color, which represents the unmodified data-driven estimate of confidence in the fault 

interpretation process. Figure 4(b) shows a fault probability map post-processed by the trained GAN 

model.  The fault probability map is reconstructed, and noticeably enhanced, by the GAN model, with 

improved probability scores closer to 1, which brings advantage to analyze fault orientation and build 

fault discretization model  Notice that this GAN model only enhances fault probabilities where low 

values already exist; it does not generate new (false) fault segments.  This new approach results in more 

detailed structural delineation, which, in turn, can increase the likelihood of technical and economic 

success with regard to discovering hydrocarbon accumulations. 

Conclusions 

In this abstract, a post-processing workflow by training a GAN system to enhance the resolution of fault 

probability maps is introduced. Synthetic fault data were used as training data to train a modified GAN 

system, and then the trained GAN model was applied to two different field data sets. The results indicate 

that the GAN is capable of reconstructing the prediction map and enhancing and clarifying data where 

low probability exists, it also shows the potential benefits to generate thinned fault likelihood over other 

post-processing method, such as amplitude threshold method. This adversarial model could be applied 

to many other areas of seismic data processing and interpretation, such as domain transfer, 

reconstruction of missing traces, anomaly detection, etc. 
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