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Summary 
 
Recent advances in seismic data processing with multi-component data have shown contributions from elastic 
waves in tilted transversely isotropic (TTI) media. To obtain better understanding of the elastic wave propagation 
in TTI media, finite difference elastic modeling is becoming valuable. However, a standard staggered grid scheme 
require additional interpolation between certain field variables for off-diagonal derivatives, which may reduce 
accuracy with significant memory allocation and considerable computation time. To overcome such issues, an 
adaptive Lebedev staggered grid scheme is developed for TTI elastic modeling. It reduces memory usage and 
computation time with stable results. The preliminary experiments demonstrate the accuracy and efficiency of this 
scheme. 

 



 

 
82nd EAGE Conference & Exhibition 2020 

8-11 December 2020, Amsterdam, The Netherlands 

 Introduction 

Seismic anisotropy exists in most sedimentary rocks. In dipping shale layers, the symmetry axis of the 

transverse isotropic layer will be tilted by a certain dip angle. Proper treatment on tilted transversely 

isotropic (TTI) elastic waves can avoid misinterpretation of anisotropic waves as artifacts and provide 

complementary information over isotropic velocity. It is crucial to understand and exploit elastic wave 

propagation in TTI media. Finite difference scheme has been considered the most popular 

implementation to model wave propagation in elastic media.  

To perform elastic modeling in TTI media with the standard staggered grid (Virieux 1986), wavefield 

interpolation is necessary but reduces the simulation accuracy. Saenger et al. (2000) introduced the 

rotated staggered grid finite difference method for modeling elastic waves in TTI media. Lisitsa and 

Vishnevskiy (2010) proposed the Lebedev staggered grid to simulate TTI elastic modeling. In their 

method, the stress and particle velocities are divided into four sub-grid groups and each group is used 

for elastic modeling. Bernth and Chapman (2011) compared the rotated staggered grid and the 

Lebedev staggered grid based on equivalent dispersion error. They concluded that the Lebedev 

staggered grid is preferable for TTI elastic modeling. 

Conventional finite difference elastic modeling is performed with full elastic wave equations using 

fixed-grid discretization throughout the 3D volume. However, it requires a significant computing cost 

and encounters oversampling issues (Fornberg 1988). To improve the computation efficiency and 

avoid spatial oversampling with high velocity, Pitarka (1999) proposed a method for spatial-

differential operators in staggered grid formulation with adaptive grid spacing in pure elastic media. 

Jiang and Jin (2013) developed a new hybrid acoustic-elastic wave modeling method with adaptive 

grid implementation. Their method avoids the oversampling issue and results in a tremendous 

improvement in computing efficiency. This abstract proposes an adaptive Lebedev staggered grid to 

significantly reduce the memory requirement and improve the computation efficiency for 3D TTI 

elastic modeling. 

Methodology 

In elastic medium, the velocity-stress equations are applied as: 
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Where, λ and μ are the Lame constants,  is the first derivative over time of the ith particle velocity 

component, τij,j is the first derivative over jth (j=x, y, z) component of the stress tensor, δij is the 

component of the Kronecker tensor, and vk,k = vx,x + vy,y + vz,z. Lisitsa and Vishnevskiy (2010) 

developed a Lebedev staggered grid to simulate TTI elastic modeling with high accuracy. The stress 

and particle velocity components are divided into four sub-grid groups (Figure 1) and stored in 

staggered locations. 

Figure 1: The Lebedev staggered grid. The red circle represents particle velocity component 

vα(α=x,y,z), and the blue triangle stands for stress component τβγ(β,γ=x,y,z). 
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 This approach removes the rotation of a gradient or the divergence of a rotation. It does not need 

interpolation of spatial derivatives and can provide highly accurate results. The final result will be 

summed by all components at four sub-grid groups into one output grid group. To reduce memory 

usage and save computational time, an efficient scheme is to use an adaptive grid that applies to 

different velocity zones (Figure 2). The interface between different zones is accomplished by the 

linear interpolation of field variables only in the areas of discontinuity grids or overlap zone (Figure 

3). In this overlap zone, vertical derivatives are calculated by finite difference with least-square 

variable coefficients. For each component of particle velocities (vαω (α=x,y,z and ω=1,2,3,4) or stress 

τβγω(β,γ=x,y,z and ω=1,2,3,4), the vertical derivatives with variable coefficients are implemented to all 

four sub-grid groups. In this case, each parameter set is accomplished by adaptive staggered grid 

scheme, and it is possible to adapt the grid spacing to velocity structure in accordance with the elastic 

finite difference requirement. 

(a)  (b)

Figure 2: Adaptive Lebedev staggered grid in (a) 

integer grid point (y=J) and (b) in half-grid point 

(y=J+1/2). Here, α,β,γ = x,y,z. 

Figure 3: Layout of vertically variable grid 

with overlap zone. 

High-order finite difference scheme is implemented to avoid grid dispersion, particularly when low 

shear wave velocity exists. The regular finite difference with uniform grid spacing will dominate the 

wave propagation. However, in the overlap zone (Figure 3), a group of variable 16th-order finite 

difference coefficients will be applied to calculate the derivatives of each field variable. These 

coefficients are calculated by Taylor’s expansion, which is used to approximate the exponentials of 

spatial derivatives of each variable (Pitarka 1999). Once the velocity model is split into different zones 

and grid spacing is determined in each zone from minimum S-wave velocity and maximum frequency, 

variable coefficients in each zone can be calculated before the modeling step. A special treatment of 

the boundary condition is necessary to avoid numerical boundary reflection. Here, the unsplit 

convolutional-PML (C-PML) (Martin and Komatitsch 2009) boundary condition is extended to 

incorporate with adaptive Lebedev staggered grid in TTI media. Because C-PML does not require 

splitting equations into separate equations, this reconfiguration is straightforward. 

Numerical tests show that, for high-order finite difference scheme with variable grid, the Lebedev 

staggered grid requires less grids per wavelength than standard staggered grid to achieve the same 

dispersion error. The dispersion relation is derived as dz = Vmin/(Freqmax*N), where Vmin is minimum 

velocity in each zone, Freqmax is maximum frequency of modeling, and N is grid point per minimum 

wavelength. Spatial sampling dz is variable in different velocity zones. The stability condition of the 

staggered grid scheme is tested with a series of numerical tests and is satisfied by 

dt=dzmin/(∑|ai|*√dim*Vmax), where dzmin is minimum grid spacing in each zone, ∑|ai| is the sum of 

absolute value of finite difference coefficients, dim is the model dimension, dim=2 if 2D modeling or 

dim=3 if 3D modeling, Vmax is maximum velocity value in each zone. Time sampling rate is calculated 

in each velocity zone, and only the minimum sampling rate among all zones will be selected as the 

final propagation time sampling rate. 
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 Numerical Examples 

Figure 4 shows a displacement comparison between the analytical and numerical result of the Lebedev 

staggered grid. Source wavelet is a triangle wavelet with 20-Hz maximum frequency. Source 

excitation type is moment tensor source [0, 1, 0; 1, 0, 0; 0, 0, 0]. By comparing the relative amplitude 

and traveltime, the Lebedev grid implementation results match very well with the analytical results. 

Furthermore, a comparison in a three-layer model between VTI and TTI media is performed. Table 1 

shows the model parameters in each layer. The computation aperture is limited to a 4-km crossline 

aperture and 4-km inline aperture with 5-km modeling depth. The Ricker wavelet is used with a 25-Hz 

maximum frequency and source depth is 500 m below surface. In this example, a 60° constant tilted 

dip angle and 30° azimuth angle are used in the whole model. By applying an adaptive staggered grid 

scheme, the velocity model is split into three zones. Figure 5 shows snapshots in VTI and TTI media 

at 1 second. In this example, the standard adaptive staggered grid is used for VTI elastic modeling, 

while the adaptive Lebedev staggered grid is used for TTI elastic modeling.  

Figure 4: (a) Triangle source wavelet; (b) displacement comparison between analytical (red line) 

and numerical Lebedev grid (blue line) results. 

Table 1: Anisotropic velocity parameters 

Vp 
(km/s) 

Vs 
(km/s) 

ε δ γ 
Tilted 
dip θ 

Azimuth 
φ 

1 2.0 1.0 0.3 0.05 0.3 

60° 30° 2 3.0 1.8 0.2 0.1 0.2 

3 4.0 2.4 0.15 0.08 0.15 

Table 2: Comparisons of memory usage and 

computation time 

VTI 

(Standard grid) 

TTI 

(Lebedev grid) 

Fixed 

grid 

Adaptive 

grid 

Fixed 

grid 

Adaptive 

grid 

Memory 

usage (GB) 
1 0.44 1 0.34 

Computation 

time (hr) 
1 0.29 1 0.35 

Table 2 compares memory usage and computation time for VTI and TTI elastic modeling with and 

without adaptive grid scheme. During this test, the adaptive Lebedev grid scheme saves more than 

60% memory usage than the conventional fixed Lebedev grid scheme. The total computation time also 

decreases to 60% less than the conventional fixed Lebedev grid scheme.  

Shear wave triplication, or birefringence, is clearly shown in Figure 5. The existence of the triplication 

depends on the strength of three anisotropic parameters (ε, δ, and γ) and the variation of tilted dip and 

azimuth angle. This can be observed at long offset converted wave data, long offset vertical seismic 

profiles (VSPs), and cross-well seismic data. With implementation of rotated symmetry axis, the 

polarization of S-wave will lie in different planes, which generate two different S-wave velocities, or 

shear-wave splitting. Shear-wave splitting helps measure the degree of anisotropy and leads to a better 

understanding of sediment density and crack orientation. 
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 Conclusions 

This abstract proposed an adaptive Lebedev staggered grid scheme for TTI elastic wave modeling. 

Lebedev staggered grid avoids extra interpolation of off-diagonal derivative that exists in the standard 

staggered grid scheme. Combining Lebedev staggered grid with adaptive grid scheme, oversampling 

in high-velocity areas is avoided. This method provides the capability to model large datasets with less 

memory requirement and faster computational time compared to the traditional TTI elastic modeling 

scheme. Implementing TTI elastic modeling will help seismic processors and interpreters understand 

shear-wave splitting, or the degree of anisotropy, which leads to a better understanding of the 

sediment property and detecting the fracture orientation. 

Figure 5: Snapshots of vertical component in (a) VTI and (b) TTI media. Here, t = 1 second. The 

green star is the source position. In TTI media, tilted angle and azimuth angle rotate the wavefield 

by a certain angle, which results in clear shear-wave splitting shown in (b). 
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