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Summary 
 
Fault identification in seismic data is a vital but time-consuming step in the seismic interpretation workflow. Recent 
studies demonstrate how deep-learning techniques, such as convolutional neural networks (CNN), can be used to 
automatically identify these faults with high accuracy. However, different levels of signal-to-noise ratios in seismic 
data can degrade prediction accuracy. A low resolution of predicted faults can cause multiple issues, such as failing 
to identify potential drilling hazards. In this abstract, a workflow is developed to combine the seismic data with 
multiple seismic attributes to train machine-learning models using a multichannel CNN architecture. A random forest 
is implemented to analyse the selection of each attribute in terms of a feature importance factor. Several attributes 
with a high-importance factor are selected as additional channels to feed into the multichannel CNN architecture. 
A comparison of fault predictions between a probability map generated from a model trained by seismic-only and 
a model trained using seismic-plus-attributes is presented. The results exhibit significant improvement on the 
continuity of fault segments and reveal missing fault planes not identified using a seismic-only model. Additionally, 
a modified generative adversarial network is implemented to reconstruct the fault probability map to help improve 
the resolution. 
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Introduction 

Fault identification in seismic data is a vital but time-consuming step in the seismic interpretation 

workflow. Recent studies demonstrate how deep-learning techniques, such as convolutional neural 

networks (CNN), can be used to automatically identify these faults quickly with high accuracy. 

However, different levels of signal-to-noise ratios and other artifacts in seismic data can degrade 

prediction accuracy. A low resolution of predicted faults can cause multiple issues, such as failing to 

identify potential drilling hazards. 

Seismic attributes, quantities calculated from seismic data, are frequently used to analyze and enhance 

the quality of geological or geophysical interpretations. Many attributes have been developed to assist 

fault interpretation (Marfurt and Kirlin 2000; Hale 2009). Those methods can be considered traditional 

computer-aided approaches to assist human interpretation. With recent developments in image 

recognition and target identification research, a neural network approach has become an effective tool 

to assist geophysical feature interpretation, particularly in automatic fault prediction. Zhang et al. 

(2019) developed a deep CNN model for 3D fault picking, which also helps predict fault dip and 

azimuth information. Zhao (2019) implemented a CNN architecture to detect faults while estimating 

fault orientation from fault probability. 

For this abstract, a workflow is developed to combine original seismic data with multiple attributes to 

train machine-learning models using a multichannel CNN architecture. A random forest (RF) 

architecture is implemented to analyze the selection of the best seismic attributes to assist fault 

identification. The selected attributes are considered additional channels to feed into a multichannel 

CNN architecture. Finally, a generative adversarial networks (GANs) (Goodfellow et al. 2014)-based 

post-processing reconstruction workflow is applied to help eliminate blurry effects and improve the 

resolution of the predicted fault probability map. Two examples are illustrated to exhibit the 

improvement of prediction results compared to the seismic-only CNN architecture. 

Method 

CNN has shown to be good for image recognition and feature extraction in computer vision. The 

U-Net architecture (Ronneberger et al. 2015) was designed for image segmentation in biomedical 

images and has become a popular tool for seismic interpretation, particularly in the areas of salt 

detection, fault prediction, and facies classification. The traditional U-Net architecture adopted 

extends the input layer to allow seismic attributes as additional channels (Figure 1). A synthetic data 

generator (Wu et al. 2019) is implemented to create various seismic volumes, attributes, and fault 

labels and to train a 3D multichannel U-Net for fault prediction. 

Figure 1: Workflow of attribute-assisted automatic fault prediction. 
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During training, seismic attributes serve as a guide to provide detailed structural information in the 

encoder from U-Net. The U-Net decoder reconstructs the extracted feature to identify where the fault 

should exist. More than 30 seismic attributes belonging to several different categories (i.e., amplitude, 

phase, frequency, or structure) were generated. A RF, a decision-tree-based approach, is implemented 

to calculate the importance factor for each attribute and to demonstrate how important each attribute is 

in generating a fault probability map. The selected attributes identify both discontinuity in seismic 

data and the continuity of amplitude events. Figure 2 shows a chart of feature importance, indicating 

the most important attributes for fault identification purposes with related standard deviation. The 

attribute “discontinuity along dip” shows the highest importance factor among the attributes, accounts 

for reflection dip, and produces cleaner images than standard discontinuity (Hale 2009), which 

highlights faults, channels, and diapirs. 

Figure 2: Feature importance of seismic attributes. 

The attribute “most positive curvature” records the most positive rate of change of the reflection dip 

and azimuth, highlights reflection bumps in seismic reflections, and is closely related to the attribute 

“most negative curvature”, which highlights reflection sags. Normal faults often exhibit positive 

curvature on the up-thrown side and negative curvature on the down-thrown side. The “relative 

amplitude change” attribute serves as a directional high-resolution discontinuity attribute that reveals 

details in faults and channels along time or depth and exhibits similar effects to the coherence 

amplitude gradient (Marfurt and Kirlin 2000). Attributes with a high-importance factor are recognized 

as good attributes to assist fault prediction and treated as additional channels to feed into a 

multichannel U-Net. Those attributes can be calculated before the prediction step using various 

commercial software tools. The multichannel U-Net has the ability to use any available attributes, and 

in our tests, four attributes are implemented that have the highest rank (Figure 2). A standardization 

scalar is applied to centralize and scale each feature by computing mean and standard deviation. 

Deep-learning prediction results always have a low-probability component, which shows as blurry 

images on a fault probability map and affect the ability to extract complete fault planes. Implementing 

an amplitude threshold approach to decrease blurry effects is not effective because there is ambiguity 

in defining an optimal amplitude threshold value. A GANs-based super resolution algorithm was 

implemented to help eliminate the blurry effects. This adversarial model can automatically discover 

and learn the regularities and patterns from input fault probability maps to mimic data distribution. 

This GANs-based fault clarification workflow can be used as a standard post-processing step to help 

eliminate low probability and can potentially be extended to other deep-learning prediction results 

where low probability exists. 

Examples 

To train a multichannel U-Net model, multiple synthetic seismic cubes, attributes selected by the 

importance factors, and fault labels were generated. To compare the prediction result, two U-Net 

models were trained: the first model only contained seismic and fault label data, and the second model 
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contained seismic, multiple attributes, and fault label data. The remaining network layers were kept 

exactly the same between the two models to avoid any discrepancy during training. To train the model 

with multiple attributes, an iterative data generator workflow was implemented to optimize the 

consumption of system and GPU memory allocation. The final trained multichannel model could be 

treated as a general model to help predict fault probability maps from different seismic surveys. The 

proposed approach was applied to two different seismic surveys—Indian 3D 2000 MSS, provided by 

the Australian government, and OPUMAKE 3D from the Taranaiki Basin, provided by New Zealand 

Petroleum and Minerals. 

Figure 3 shows the comparison of fault prediction from the Indian 3D 2000 MSS survey. Figure 3a 

used a seismic-only trained model to help predict the fault probability map, and Figure 3b used a 

model trained using seismic plus multiple attributes to help predict the fault probability map. It was 

observed that fault segments predicted by seismic-plus-attributes exhibit a good improvement, marked 

by the white arrows, compared to faults predicted by seismic only. The result shows an improvement 

in the continuity of fault segments and reveals several missing fault segments.  

Figure 3: Comparison of predicted fault probability map between (a) predicted by model trained from 

seismic only and (b) predicted by model trained from seismic plus attributes on Indian 3D 2000 MSS 

survey.  

Figure 4 shows additional prediction results from the OPUMAKE 3D data set. The proposed model 

creates clearer fault images with less noise compared to the seismic-only model. Figure 4b shows 

several fault segments (highlighted by the white arrows) on a depth slice that are predicted and 

extended further along a seismic discontinuity. 

Figure 4: Comparison of predicted fault probability map between (a) predicted by model trained from 

seismic only and (b) predicted by model trained from seismic plus attributes on OPUMAKE 3D 

survey.  
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Fault prediction results from deep learning are often characterized by low-resolution fault probabilities 

that extend fault-like images beyond the true fault-plane range. The low fidelity of the fault prediction 

results can create uncertainty when locating the true fault. We implement a GANs-based algorithm to 

help improve the resolution of the fault probability map. A weighting matrix is added to scale up the 

amplitude of the local patterns. The reconstructed fault segments exhibit thinner and clearer segments 

(Figure 5). The application of GANs is not limited to reconstructing and clarifying fault probability 

maps, it can also be used to reconstruct other seismic features to help improve their resolution, such as 

salt bodies and multifacies prediction results. 

Figure 5: Comparison of multiattribute prediction results. (a) Before applying GANs-based approach 
and (b) after applying GANs-based approach on Indian 3D 2000 MSS survey.  

Conclusion 

For this abstract, a multichannel U-Net architecture was implemented to help improve the prediction 

accuracy of fault probability maps. A decision-tree-based analysis of the feature importance helped 

identify the most important attributes as additional channels to feed into the network. By training with 

seismic and multiple attributes simultaneously, the approach helped successfully improve prediction 

results to identify more continuous fault segments and predict missing fault segments that are not 

estimated using a seismic-only trained model. Implementing a GANs-based reconstruction approach 

further clarifies fault locations and helps eliminate low probability blurred areas, providing a higher 

quality fault probability map. 

Acknowledgment 

The authors thank the Australian Government and New Zealand Petroleum and Minerals for providing 

the seismic data used in this research. 

References 

Dave, H. [2009] Structure-oriented smoothing and semblance: CWP Report 635. 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., 

Bengio, Y. [2014] Generative adversarial networks, Proceedings of the international conference 

on neural information processing systems (NIPS 2014). 2672–2680. 

Marfurt, K. J., and R. L. Kirlin, 2000, 3-D broad-band estimates of reflector dip and amplitude: 

Geophysics, 65, 304–320. 

Ronneberger, O., Fischer, P., and Brox, T. [2015] U-Net: Convolutional networks for biomedical 

image segmentation, International conference on medical image computing and computer-assisted 

intervention, 234–241. 

Zhao, T. [2019] 3D convolutional neural networks for efficient fault detection and orientation 

estimation. SEG Annual Meeting, Extended Abstracts, 2418–2422. 

Zhang, Q., Yusifov, A., Joy, C., Shi, Y. and Wu, X. [2019] FaultNet: A deep CNN model for 3D 

automated fault picking. SEG Annual Meeting, Extended Abstracts, 2413–2417. 

Wu, X., Liang, L., Shi, Y. and Fomel, S., [2019] FultSeg3D: Using synthetic data sets to train an end-

to-end convolutional neural network for 3D seismic fault segmentation, Geophysics, 84, IM35–

IM45. 


