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Summary 
 
Assisted fault interpretation leveraging machine learning techniques has become a promising way to 

identify faults in seismic. In geophysical exploration, faults are often considered as a sealing surface 
which traps hydrocarbons and forms reservoir zones. Thus, correctly identifying fault locations is 

critical. Fault identification can be treated as a semantic segmentation issue where we classify each 

seismic pixel into one of a given set of categories, such as fault or non-fault. To be successful we need 
to combine pixel-level accuracy with global-level feature identification. In this abstract, we propose a 

novel deep learning network with multi-scale dilated convolution to identify fault locations. It is based 

on adaptions of a convolutional neural network architecture which has been used for image 

classification and semantic segmentation. The motivation is that dilated convolution supports 
exponentially expanding receptive fields without losing resolution or coverage. We implemented 

multiple dilated convolution layers with variable dilation rates to systematically aggregate multi-scale 

seismic information. Several tests are shown and demonstrate the improvement of identification 
accuracy with higher resolution. 
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Assisted Fault Interpretation by Multi-scale Dilated Convolutional Neural Network 

Introduction 

In geophysical exploration, faults are often considered as a sealing surface to trap hydrocarbons and 

form reservoir zones. Thus, correctly identifying fault locations is critical. Assisted fault interpretation 

leveraging machine learning techniques has become a promising way to predict fault locations. Fault 

prediction can be treated as a semantic segmentation issue where we classify each pixel into one of a 

given set of categories, such as fault or non-fault. To be successful we need to combine pixel-level 

accuracy with global-level feature identification. Among different semantic segmentation algorithms, a 

convolutional neural network (CNN) has been demonstrated as a successful architecture to extract fault 

patterns from seismic data. However, different levels of signal-to-noise ratio in seismic data and other 

artifacts can degrade prediction accuracy, which can result in low resolution which prevents identifying 

the faults. 

A deep learning-based fault identification process can quickly provide an estimate of fault location in 

seismic data. Wu et al. (2018) performed an efficient image-to-image fault segmentation by using a 

supervised, fully convolutional neural network. They created multiple synthetic seismic images and 

corresponding binary fault labelled images to train a fault segmentation network. Jiang and Norlund 

(2020) proposed a workflow to rank different seismic attributes for predicting  faults, then selected the 

most important attributes to assist a multi-channel CNN and improve the continuity of imaged fault 

segments. To improve the resolution, Fisher et al. (2015) proposed an approach to improve the 

segmentation resolution by repeating up-convolutions to recover lost resolution while carrying over the 

global perspective from down-sampled layers. Simonyan and Zisserman (2015) integrated multi-scale 

contextual information via successive pooling and subsampling layers that reduced resolution until a 

global prediction was obtained.  

In this abstract, we proposed an innovative deep learning network with multi-scale dilated convolution 

for fault prediction. It is based on adaptions of CNN architecture which have been used for image 

classification and semantic segmentation. The motivation is that dilated convolution supports 

exponentially expanding receptive fields without losing resolution or coverage. We implemented 

multiple dilated convolution layers to systematically aggregate multi-scale seismic information. We 

have demonstrated our approach in synthetic data and field data to exhibit the improvement of prediction 

results with higher resolution. 

Methods 

Many geophysical interpretation problems are instances of dense prediction, which describes a discrete 

or continuous label for each pixel in the image and requires classifying each pixel into one of a given 

set of categories (e.g. classification as fault, salt, or horizon). In computer vision, researchers have been 

trying to implement different neural networks to obtain images by multi-scale dense prediction (e.g., 

Liu and He, 2015; Yu and Koltum, 2016) for various applications, such as to train a model in an 

autonomous car. Compared with standard convolution, dilated convolution has shown the ability to 

detect finer details by bringing a broader view of the input to capture more neighbouring information. 

In 1D, dilated convolution is defined as: 

𝑜𝑢𝑡𝑝𝑢𝑡[𝑖] = ∑ 𝑖𝑛𝑝𝑢𝑡[𝑖 + 𝑟 ∗ 𝑙] ∗ ℎ[𝑙]𝐿
𝑙=1

Where 𝑖𝑛𝑝𝑢𝑡 and 𝑜𝑢𝑡𝑝𝑢𝑡 are extracted seismic features in a CNN.  ℎ[𝑙] represents the convolution 

filter of length L, and 𝑟 denotes the dilation rate we use to sample 𝑖𝑛𝑝𝑢𝑡[𝑖]. A standard convolution will 

have a dilation rate equal to 1. We then combine standard convolution and dilated convolution in a 3D 

CNN, followed by a multi-scale aggregated module, to calculate a full range of seismic receptive fields. 

Our multi-scale module (Table 1) is based on a rectangular prism of a set of dilated convolutional layers, 

which support the exponential expansion of the receptive field without losing resolution or coverage. 

This module takes the feature maps produced from the previous layer as input and outputs the same 
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form of the feature maps. Since the input and output have the same form, it is convenient to plug the 

multi-scale module into other existing fault prediction networks.   

Table 1: A multi-scale dilated convolution module 

Figure 1 illustrates the multi-scale aggregated receptive fields with dilation rates 1, 2, and 4. In this form, 

we applied the same convolutional kernel (3x3x3) to each layer, therefore each layer will have the same 

channel and could be used to directly obtain a result of dense classification. We then consider the output 

as the input of the next layer, until the 6th layer is completed. The 7th layer will stack the feature maps 

from Layer 1 to Layer 6. Since we pass the feature channels through multiple layers which expose 

different scaled seismic information, it can be used to increase the resolution of the feature maps.     

Figure 1: Illustration of dilated convolution through seismic data. Subsequent convolutional layers 

have dilation rates of L= 1 (a), 2 (b), and 4 (c), respectively. (a) The result is produced by 1-dilated 

convolution, each element has a receptive field of 3x3x3. This is the same with standard convolution; 

(b) The result is produced from (a) by 2-dilated convolution; (c) The result is produced from (b) by a

4-dilated convolution.

Figure 2 shows our CNN with a multi-scale dilated convolution module. The input seismic data will be 

fed into the standard convolutional layers with different filters to extract the different levels of feature 

maps. It will then go through a multi-scale dilated module, and then perform up-sampling to recover the 

position of each extracted feature.    

Figure 2: Our CNN architecture with a multi-scale dilated convolution module. 

Examples 

A data generator was implemented to create synthetic fault planes to be used as training data to feed 

into the standard CNN and the multi-scale dilated CNN. Besides the multi-scale dilated module, the 

remaining network layers were kept the same between the two models to avoid any discrepancy during 

training. We implemented the training workflow in TensorFlow libraries and leveraged a multi-GPU 

architecture to expedite the training process. Figure 3 shows the training loss and accuracy. At each 

epoch, the multi-scale dilated CNN obtained a lower loss rate and higher accuracy than the standard 
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CNN. The best accuracy during training from the standard CNN was 0.9686 whilst from the multi-scale 

dilated CNN it was 0.9758. Figure 4 shows a validation test from synthetic data. In this test, the accuracy 

of standard CNN is 0.915 whilst the accuracy of multi-scale dilated CNN is 0.934. The prediction result 

from multi-scale dilated CNN shows better prediction on two near faults and brings a clearer image at 

the fault intersections.     

Figure 3:  Model loss and accuracy comparison between standard CNN and multi-scale dilated CNN. 

At epoch 100, the model loss for standard CNN is 0.0083 whilst for multi-scale dilated CNN it is 

0.0064. Model accuracy for standard CNN is 0.9686 whilst for the multi-scale dilated CNN it is 

0.9758.  

Figure 4: A synthetic data test. (a) Seismic data; (b) Fault prediction by standard CNN; (c) Fault 

prediction by multi-scale dilated CNN; (d) The ground truth. Both CNNs performed well to predict 

faults where a simple structure exists, but the multi-scale dilated CNN predicted finer details which 

separated two closely spaced faults, and also showed a higher resolution at fault intersections.   

Figures 5 and 6 show section and time slice comparisons for fault prediction from the Kerry3D dataset 

provided by New Zealand Petroleum and Minerals. Figure 5a used a standard CNN trained model to 

predict the fault probability map, and Figure 5b used a multi-scale dilated CNN trained model to predict 

the fault probability map. It was observed that the fault segment predicted by multi-scale dilated CNN 

demonstrates improvement in the continuity of the fault segments and also reveals some missing fault 

segments. Figure 6 shows a time slice comparison on the same dataset at t = 0.5 sec. The multi-scale 

dilated CNN model (Figure 6b) predicts fault segments with higher resolution whilst mitigating 

acquisition footprints observed in Figure 6a.      

Conclusions 

For this abstract, a novel multi-scale dilated CNN architecture was implemented to help improve the 

prediction accuracy of fault probability maps. In this multi-scale module, the input feature maps and 

output feature maps have the same form, therefore it is convenient to plug this multi-scale dilated 

module into other existing fault prediction networks. We have demonstrated that multi-scale dilated 

CNN is capable of improving the continuity of fault segments with higher resolution as well as 

mitigating acquisition artifacts. The improved fault images make it easier to extract discrete fauslt planes 

as part of the complete seismic interpretation workflow. 
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Figure 5: The prediction comparison along the inline direction between (a) Standard CNN trained 

model and (b) Multi-scale dilated CNN trained model.  

Figure 6: The prediction comparison on time slice t=0.5sec between (a) The standard CNN trained 

model and (b) The multi-scale dilated CNN trained model.  


