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ABSTRACT 

This disclosure presents a fault prediction system using a 
deep learning neural network, such as a convolutional neural 

Jan. 16, 2020 network. The fault prediction system utilizes as input seis- 

mic data, and then derives various seismic attributes from 

Publication Classification 

the seismic data. In various aspects, the seismic attributes 

can be normalized and have importance coefficients deter- 
mined. A sub-set of seismic attributes can be selected to 

reduce computing resources and processing time. The deep 
learning neural network can utilize the seismic data and 

seismic attributes to determine parameterized results repre- 

senting fault probabilities. The fault prediction system can 
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DEEP LEARNING SEISMIC ATTRIBUTE 
FAULT PREDICTIONS 

CROSS-REFERENCE TO RELATED 

APPLICATION 

[0001] This application claims the benefit of U.S. Provi- 

sional Application Ser. No. 62/948,553, filed by Fan Jiang, 
et al. on Dec. 16, 2019, entitled “DEEP LEARNING SEIS- 
MIC ATTRIBUTE FAULT PREDICTIONS,” commonly 
assigned with this application and incorporated herein by 

reference in its entirety. 

TECHNICAL FIELD 

[0002] This application is directed, in general, to process- 

ing seismic data and, more specifically, to predicting sub- 
terranean faults. 

BACKGROUND 

[0003] When developing a well operation plan, a drilling 
plan, or other well system operation, one input that can be 

used for those plans is seismic data representing faults and 

subterranean formation characteristics. Drilling plans, for 
example, can be altered to avoid subterranean hazards or to 

enhance natural fractures for improved hydrocarbon flow. 
Current techniques for processing the seismic data may lead 

to a fault representation that does not have the desired level 
of accuracy, such as false positives on fault detection or 

missing faults. Some conventional techniques use deep 

learning neural networks while not refining the seismic data 
potentially leading to less accurate models. Other techniques 

do not use deep learning models which may lead to the 
analysis process being more burdensome. A technique that 

can increase the fault prediction accuracy while not exceed- 
ing computational resource thresholds would be beneficial. 

SUMMARY 

[0004] In one aspect, a method to predict subterranean 
formation faults is disclosed. In one embodiment, the 

method includes (1) receiving seismic data correlating to a 

subterranean formation, (2) deriving a set of seismic attri- 
butes from the seismic data, (3) determining parameterized 

results by analyzing the seismic data and the set of seismic 
attributes using a deep learning neural network (DNN), 

wherein the DNN has been trained using previous seismic 
data and previous seismic attributes, and (4) calculating one 

or more fault probabilities utilizing the parameterized 

results. 
[0005] In a second aspect, a method to train a fault 

predictor DNN is disclosed. In one embodiment, the method 
includes (1) receiving one or more sets of seismic data 

correlating to one or more respective subterranean forma- 
tions, wherein the subterranean formations are part of one or 

more well systems, (2) deriving a set of seismic attributes for 

each of the one or more sets of seismic data, (3) normalizing 
seismic attributes in the set of seismic attributes, (4) gener- 

ating multi-channel data, wherein the multi-channel data is 
derived from the one or more sets of seismic data and 

respective sets of seismic attributes, and (5) training the 
DNN by analyzing the multi-channel data and applying fault 

labels. 

[0006] In a third aspect, a system to predict faults is 
disclosed. In one embodiment the system includes (1) seis- 

mic data receiver, capable of receiving seismic data from 
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one or more sources, wherein the seismic data correlates to 
a subterranean formation, (2) a seismic attribute deriver, 

capable to derive a set of seismic attributes from each of the 
received seismic data, and (3) a fault predictor DNN, 

capable of analyzing the received seismic data and each of 
the sets of seismic attributes utilizing a trained DNN model, 

and providing parameterized results representing fault prob- 

abilities. 
[0007] In a fourth aspect, a computer program product 

having a series of operating instructions stored on a non- 
transitory computer-readable medium that directs a data 

processing apparatus when executed thereby to perform 
operations to predict subterranean formation faults is dis- 

closed. In one embodiment the computer program product 

has operations including (1) receiving seismic data corre- 
lating to a subterranean formation, (2) deriving a set of 

seismic attributes from the seismic data, (3) determining 
parameterized results by analyzing the seismic data and the 

set of seismic attributes using a DNN, wherein the DNN has 

been previously trained using previous seismic data and 
previous seismic attributes, and (4) computing one or more 

fault probabilities utilizing the parameterized results. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0008] Reference is now made to the following descrip- 

tions taken in conjunction with the accompanying drawings, 
in which: 

[0009] FIG. 1 is an illustration of a diagram of an example 

well system developed using seismic data fault predictions; 

[0010] FIG. 2 is an illustration of a diagram of an example 

offshore well system using seismic data fault predictions; 

[0011] FIG. 3A is an illustration of a listing of an example 

seismic attribute list; 

[0012] FIG. 3B is an illustration of a chart of an example 
importance coefficient graph using the seismic attribute list 

of FIG. 3A; 

[0013] FIG. 3C is an illustration of representative data of 

an example seismic attribute replacement, building on FIG. 

3B; 

[0014] FIG. 4A is an illustration of a flow diagram of an 

example training method for a fault prediction system; 

[0015] FIG. 4B is an illustration of a flow diagram of an 

example fault predictor method; 

[0016] FIG. 5 is an illustration of diagrams of example 
outputs showing new seismic data; 

[0017] FIG. 6A is an illustration of a flow diagram of an 

example method for predicting subterranean faults; 

[0018] FIG. 6B is an illustration of a flow diagram of an 

example method, building on FIG. 6A, with a seismic 
attribute replacement; 

[0019] FIG. 7 is an illustration of a flow diagram of an 

example method for training a fault predictor system; and 

[0020] FIG. 8 is an illustration of a block diagram of an 

example fault predictor system. 

DETAILED DESCRIPTION 

[0021] When developing and planning a well system, it is 

beneficial to understand the nature, composition, and fault 
structure of the subterranean formations through which 

operations will be conducted, such as drilling operations, 

hydraulic fracturing, and other well system operations. One 
set of factors used in the analyzation of the well system can 

be the faults and fault patterns of the subterranean forma-
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tions. Understanding where the faults are located, posi- 
tioned, and orientated can aide in determining an operation 

plan and allow for the identification of potential subterra- 
nean hazards. 

[0022] Conventional fault prediction techniques may 

result in fault predictions that have less accuracy than 
specified for the well system. Different levels of signal to 

noise ratio and frequency bands can degrade the prediction 
accuracy. Fault planes may not be correctly identified 

thereby leading to a less optimal operation plan. Some 
conventional fault prediction techniques may be time-con- 

suming where the time to analyze the collected data can 

introduce time delays in implementing the operation plan, 
thereby increasing operational costs. In addition, conven- 

tional techniques may not incorporate sufficient data to meet 
an accuracy threshold. In some conventional deep learning 

neural network techniques, image segmentation and feature 

extraction may be relied on rather than the use of seismic 
attribute derivations. Improving the accuracy of the fault 

predictions can lower costs through optimizing operations as 
well as avoiding subterranean hazards that could increase 

time and costs, such as causing additional maintenance on 
drilling assemblies. 

[0023] This disclosure presents a fault prediction tech- 

nique using a neural network, such as a deep learning neural 
network (DNN), that uses seismic data collected from tools 

and seismic attributes derived from the seismic data. The 
technique can result in faster fault predictions, such that they 

can be run in near real-time at a well system job site, and 

uses seismic attributes to increase the fault prediction accu- 
racy. The seismic attributes can provide more granular detail 

on the seismic data to improve the analyzation results from 
the DNN. 

[0024] Seismic attributes, which are data parameters 

extracted or derived from seismic data, are used to analyze 
and enhance the quality of geological or geophysical inter- 

pretations. The set of seismic attributes can be derived from 
the seismic amplitude data by analyzing the data in a moving 

one-dimensional, two dimensional, or three-dimensional 
window. The data analyzation can, for example, utilize one 

or more of a frequency parameter, a density parameter, an 

amplitude parameter, a thermal parameter, a radioactivity 
parameter, an absorption parameter, and other subterranean 

formation parameters. A DNN can be trained utilizing the 
seismic data and the seismic attributes, for example, using 

multi-channels for a deep learning convolutional neural 

network (CNN). The seismic attributes can be considered as 
a channel to feed to the input layer of the DNN, 

[0025] During training, seismic attributes can serve as a 
guide to provide finer structure information where the origi- 

nal seismic data can present such information as noise. 

Seismic attributes can be assigned an importance coefficient 
to assist in weighting the value of the respective seismic 

attribute. In addition, each importance coefficient can be 
correlated with a standard deviation to provide additional 

information for the DNN training. The seismic attributes can 
identify discontinuous structures and also represent the 

continuity of amplitude events in order to provide additional 

structural information. 

[0026] The utilization of the seismic attributes can 

improve the identification of fault planes and reduce false- 

positive predictions compared to previous conventional 
techniques. Seismic attributes can be pre-calculated from the 

seismic data or calculated during the training process of the 
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DNN. A sub-set of seismic attributes can be selected and 
used when training or executing the fault prediction process. 

The selection of seismic attributes for the sub-set can 
represent edge detection data, as well as distinguish sub- 

surface continuity and dip information. For example, a 
sub-set of seismic attributes can include discontinuity, rela- 

tive amplitude change in x-axis and y-axis orientations, 

sweet, curvature, and other types of seismic attributes. 

[0027] Turning now to the figures, FIG. 1 is an illustration 

of a diagram of an example well system 100, for example, 
a drilling system, an extraction system, a production system, 

a wireline system with a pump, and other hydrocarbon well 

systems, developed using seismic data fault predictions. 
Well system 100 includes a derrick 105, a well site controller 

107, and a computing system 108. Well site controller 107 
includes a processor and a memory and is configured to 

direct operation of well system 100. Derrick 105 is located 

at a surface 106. 

[0028] Extending below derrick 105 is a borehole 110 with 

a drill string 115 inserted within borehole 110. Located at the 
bottom of drill string 115 are downhole tools 120. Downhole 

tools 120 can include various downhole tools and bottom 

hole assemblies (BHA), such as a drilling bit 122 and 
seismic telemetry devices. Other components of downhole 

tools 120 can be present, such as a local power supply (e.g., 
a generator), batteries, capacitors, telemetry systems, as well 

as a transceiver and a control system. Borehole 110 is 
surrounded by subterranean formation 150. 

[0029] Well site controller 107, or a computing system 108 

communicatively coupled to well site controller 107, can be 
utilized to communicate with downhole tools 120, such as 

sending and receiving seismic data correlated to subterra- 
nean formation 150, telemetry, data, instructions, and other 

information. Computing system 108 can be proximate well 

site controller 107 or be a distance away, such as in a cloud 
environment, a data center, a lab, or a corporate office. 

Computing system 108 can be a laptop, smartphone, PDA, 
server, desktop computer, cloud computing system, and 

other computing systems that are capable to perform the 
process and methods described herein. Well site operators, 

engineers, and other personnel can also send and receive the 

seismic data, telemetry, data, instructions, and other infor- 
mation by various conventional means with computing 

system 108 or well site controller 107. 

[0030] The seismic data collected by downhole tools 120 
can be used as the seismic data inputs into the fault predic- 

tion system. Seismic data can be received from other sources 
as well, such as other sensors located within borehole 110 or 

at surface 106, a database, cloud storage, server, and other 
data storage devices. The fault prediction system can be 

executed on computing system 108, well site controller 107, 

or another computing system proximate well system 100 or 
a distance from well system 100. The resulting fault predic- 

tions can be utilized to modify the well operation plan and 
drilling plan for well system 100. 

[0031] While FIG. 1 depicts an onshore operation, those 

skilled in the art will understand that the disclosure is 
equally well suited for use in offshore operations, such as 

illustrated in FIG. 2. Additionally, FIGS. 1 and 2 depict 
specific borehole configurations. Those skilled in the art will 

also understand that the disclosure is equally well suited for 

use in boreholes having other orientations including vertical 
boreholes, horizontal boreholes, slanted boreholes, multilat- 

eral boreholes, and other borehole types.
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[0032] FIG. 2 is an illustration of a diagram of an example 
offshore well system 200 using seismic data fault predic- 

tions, where a downhole tool is placed downhole in a 
borehole 210 below a body of water 240, such as an ocean 

or sea. Water 240 has a surface 244 and has a bottom at a 
subterranean surface 242. The downhole tool can be various 

tools, pumps, assemblies, devices, sensors, and other down- 

hole tools. For demonstration, an electric submersible pump 
(ESP) assembly 220 is shown as the downhole tool. Bore- 

hole 210 is surrounded by subterranean formation 245. ESP 
assembly 220 can also be used for onshore operations. ESP 

assembly 220 includes a well controller 207 (for example, to 
act as a speed and communications controller of ESP 

assembly 220), a motor 214, and a pump 224. 

[0033] Well controller 207 can be placed in a cabinet 206 
inside a control room 204 on an offshore platform 205, such 

as an oil rig. Well controller 207 is configured to adjust the 

operations of motor 214 to improve well productivity. In the 
illustrated embodiment, motor 214 is a two-pole, three- 

phase squirrel cage induction motor that operates to turn 
pump 224. Motor 214 is located near the bottom of ESP 

assembly 220, just above downhole sensors within borehole 
210. A power cable 230 extends from well controller 207 to 

motor 214. 

[0034] In some embodiments, pump 224 can be a hori- 
zontal surface pump, a progressive cavity pump or an 

electric submersible progressive cavity pump. A drill riser 
215 can separate ESP assembly 220 from water 240 and 

subterranean formation 245. Perforations in drill riser 215 

can allow the fluid of interest from subterranean formation 
245 to enter borehole 210. 

[0035] Fault predictions can be utilized to guide future 
operations of offshore well system 200, such as faults within 

subterranean formation 245. In some aspects, ESP assembly 

220 can include seismic tools to collect seismic data, which 
can then be communicated to well controller 207. Well 

controller 207, or another communicatively coupled com- 
puting system, can implement the fault prediction system as 

described herein to generate new seismic data that can be 
used as input into the well operation plan. 

[0036] FIG. 3A is an illustration of a listing of an example 

seismic attribute list 301. Seismic attribute list 301 is a 
partial listing of available seismic attributes. Additional 

seismic attributes can be added to the process such that they 

can be trained within the deep learning model for potential 
use in future analysis processing. Seismic attribute list 301 

has an identification 310 for each seismic attribute that is 
tracked within the deep learning model, with a seismic 

attribute description 315 associated with each identification 
310. 

[0037] FIG. 3B is an illustration of a chart of an example 

importance coefficient graph 302 using the seismic attribute 
list of FIG. 3A. Importance coefficient graph 302 can be 

generated using various decision tree algorithms to compute 

the importance of selected seismic attributes as well as a 
standard deviation parameter. For example, the decision tree 

algorithms can be a random forest classifier, a decision tree 
classifier, a gradient boosting classifier, or an extra trees 

classifier. Importance coefficient graph 302 includes an 
x-axis 335 that list identification 310 for each seismic 

attribute. Y-axis 336 is the importance coefficient for the 

identified seismic attributes. For this example, the seismic 
attributes have been ordered by their respective importance 

coefficients, in descending order. Implemented fault predic- 
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tion systems can organize data in various ways that is 
convenient for the specific input layer of the DNN being 

utilized. 

[0038] Plot area of importance coeflicient graph 302 

shows the selected seismic attributes weighted by the impor- 

tance coefficient. For example, seismic attribute 25 is shown 
as bar 340. Seismic attribute 25 is also demonstrating an 

example standard deviation 345 shown as a black line. 
Importance coefficient graph 302 is for visual demonstra- 

tion; graphing the data is not necessary for implementing the 
processes described herein. 

[0039] In this example, the first five seismic attributes 

have been selected as a sub-set of seismic attributes 338. 
Sub-set of seismic attributes 338 can be the seismic attri- 

butes used within the training process and fault prediction 

process. The respective processes can use its own sub-set of 
seismic attributes. For example, the training process can use 

a larger sub-set of seismic attributes (such as eight, ten, or 
another amount) to improve the training of the trained 

model, e.g., trained DNN model, while the fault prediction 
process, e.g., fault predictor DNN, can use a smaller sub-set 

of seismic attributes (such as four, five, or another amount) 

to reduce computational resources and time. A computa- 
tional time limit parameter or a user input can be used to 

determine the number of seismic attributes to use in the 
sub-set. The selection of the seismic attributes for the sub-set 

can utilize various criteria, with the criteria of the highest 
weighted importance coefficients shown as selected in this 

example. The processes can use various numbers of seismic 

attributes, where the increase in computing cost of addi- 
tional seismic attributes being a primary factor in determin- 

ing the number to use. In some aspects, some or all of the 
seismic attributes can be utilized. 

[0040] FIG. 3C is an illustration of representative data of 

an example seismic attribute replacement 303, building on 
FIG. 3B. Seismic attribute replacement 303 has a represen- 

tative image block 350 showing an example subterranean 
formation fault that is represented by the selected seismic 

attributes. 

[0041] Image block 360 corresponds to seismic attribute 
25 representing the discontinuity dip. Image block 362 

corresponds to seismic attribute 29 representing the negative 
curvature. Image block 364 corresponds to seismic attribute 

12 representing the relative amplitude change in the y-axis 

direction. Image block 366 corresponds to seismic attribute 
7 representing the relative amplitude change in the x-axis 

direction. Image block 368 corresponds to seismic attribute 
4 representing the positive curvature. The seismic attributes 

25, 29, 12, 7, and 4 correspond to the list of attributes in FIG. 
3A. 

[0042] Through analysis, seismic attribute 12 and seismic 

attribute 7 can be determined to be characteristically similar, 
e.g., having a similar seismic attribute characteristic. For 

example, characteristically similar can be that the seismic 

attributes represent a similar attribute (1) in an orientation, 
such as inline/crossline or X-Y-Z axes, (2) in a formation 

characteristic, such as dip, discontinuity, curvature, or sur- 
face, (3) in a mathematical representation, such as ampli- 

tude, frequency, or root mean squares, or (4) in other similar 
seismic attribute characteristics. The process would benefit 

from replacing these seismic attributes with a single sub- 

stantially characteristically similar seismic attribute as 
opposed to maintaining separate importance coeflicient 

weightings. Image block 370 corresponds to seismic attri-
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bute 1 of FIG. 3A representing the relative amplitude change 
that is not sub-divided by an axis orientation. Seismic 

attribute 12 and seismic attribute 7 can be replaced by a 
single seismic attribute 1 thereby improving the weighting 

imposed by the importance coefficients. When the balance of 
importance coefficients have been improved, the accuracy of 

the resulting fault predictions can also be improved. 

[0043] FIG. 4A is an illustration of a flow diagram of an 
example training method 401 for a fault prediction system. 

Training method 401 can be used to train a neural network, 
such as a DNN, to perform fault probability analysis. 

Training method 401 can be performed, for example, on a 

fault predictor system 800 as illustrated in FIG. 8. Training 
method 401 starts at a step 410 where seismic data can be 

collected. The training process can use one or more seismic 
data sets. The seismic data can be received from various 

sources, such as a well system, a data storage system, server, 

cloud storage, data center, and other sources. A separate set 
of seismic attributes can be derived for each of the sets of 

seismic data. 

[0044] The seismic data and corresponding seismic attri- 

butes are then standardized and normalized in a step 420. 

The normalization algorithm can utilize various baselines, 
with an inclusive decimal range of zero to one or negative 

one to positive one most commonly utilized. The normalized 
data inputs can then be standardized for the input layer used 

for the training DNN. In a step 425, the input data can be 
transformed into a four-dimensional tensor, e.g., 4D cube, or 

other type of multi-channel data depending on the type of 

DNN utilized. 

[0045] Inastep 430, the input data can be transformed into 

a series of three-dimensional tensors that can be processed 
by the training DNN. In addition, in a step 435, fault labels 

can be selected and applied to the transformed data within 

the training DNN. In a step 440, the trained model can be 
stored and enabled for use for fault probability analysis by 

a fault predictor DNN. 

[0046] FIG. 4B is an illustration of a flow diagram of an 
example fault predictor method 402. Fault predictor method 

402 can be used to analyze seismic data to generate fault 
probabilities and a subsequent fault prediction utilizing the 

fault probabilities. Fault predictor method 402 can be per- 
formed, for example, on fault predictor system 800. 

[0047] Fault predictor method 402 starts at a step 460 

where seismic data is received. Ina step 465, a set of seismic 
attributes can be derived from the seismic data. In some 

aspects, the seismic attributes can be normalized, such as to 

an inclusive decimal range of 0.0 to 1.0 or -1.0 to 1.0. In 
some aspects, an importance coeflicient can be determined 

for the seismic attributes. The importance coefficient can be 
determined using various algorithms, such as random forest. 

In addition, a standard deviation parameter can be deter- 
mined for each importance coefficient. In some aspects, a 

sub-set of seismic attributes can be selected, such as select- 

ing the four or five seismic attributes with the numerically 
highest importance coefficients. The importance coefficients 

can be utilized, along with the standard deviations, by the 
fault predictor DNN as corresponding input parameters and 

weighting factors to the respective seismic attribute input. In 
some aspects, an analysis can be performed where two or 

more seismic attributes can be replaced by a different 

seismic attribute. The replacement can occur when the 
analysis determines that accuracy can be improved when the 

replaced seismic attributes are characteristically similar and 
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therefore can adversely affect the importance coefficient 
weighting. The replacement seismic attribute is substantially 

characteristically similar to the seismic attributes being 
replaced. 

[0048] Inastep 440, the seismic data and the set of seismic 

attributes, or a sub-set of seismic attributes, is processed by 
the trained model. Using conventional DNN processing, the 

trained model can determine parameterized results. The 
parameterized results can be used to calculate a set of fault 

probabilities of the subterranean formation. In a step 480, 
the fault probabilities can be transformed into predicted new 

seismic data representing the fault predictions of the system. 

The new seismic data can then be utilized by a user or other 
computing systems as input for other processes and deci- 

sions, such as being used to modify an operational plan of 
a well system. 

[0049] FIG. 5 is an illustration of diagrams of example 

outputs showing new seismic data 500. New seismic data 
500 demonstrates a comparison of an output from a con- 

ventional fault model prediction system and an output from 
the fault model prediction system as described herein. New 

seismic data 500 demonstrates that the herein described fault 

prediction system can produce more accurate fault models. 

[0050] Image 510 is a predicted new seismic data output 

by aconventional fault model prediction system. Image 520 
is a predicted new seismic data output by the fault prediction 

system as described herein. Image 510 is the same subter- 

ranean formation as Image 520. Circle 530-a, circle 532-a, 
circle 534-a, and circle 536-a highlight regions of the 

seismic data, represented as an image, where a fault line is 
not present within the circle highlight. Circle 530-8, circle 

532-b, circle 534-6, and circle 536-5 highlight respectively 
same regions of the seismic data—correlating to respective 

‘-a’ circles, where a fault line is present within the circle 

highlight. Image 520 represents more accurate fault predic- 
tions for the same subterranean formation. 

[0051] FIG. 6A is an illustration of a flow diagram of an 

example method 601 for predicting subterranean faults. 
Method 601 can be implemented using a computing system, 

such as fault predictor system 800. Method 601 starts at a 
step 610 and proceeds to a step 620. In step 620 the seismic 

data can be received, such as from a computing source, a 
data storage, or other system capable of collecting, storing, 

and communicating seismic data. In some aspects, seismic 

data can be received from a seismic sensor located at a well 
system. 

[0052] In a step 630 a set of seismic attributes can be 

derived from the seismic data. The number of seismic 
attributes in the set can vary, such as by the type of seismic 

data received. The number of seismic attributes can also be 
limited to limit the impact on the computing resources 

available to perform the processes of predicting subterra- 
nean faults and to reduce the computational time. The 

number of seismic attributes can be determined by user 

input, by default value, or through an analysis of a compu- 
tational time limit parameter with the available computing 

resources. In a step 650 the seismic data and seismic 
attributes are analyzed to determine parameterized results. 

The seismic data and seismic attributes can be input into a 
trained DNN that receives the seismic data and seismic 

attributes and performs the analysis. Depending on the input 

layer structure of the DNN, the seismic data and seismic 
attributes can be transformed into varying tensors to satisfy 

the DNN.
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[0053] Ina step 660, one or more fault probabilities can be 
calculated using the parameterized results from the trained 

model. The fault probabilities can be output for further 
analysis. The method 601 ends at a step 680. 

[0054] FIG. 6B is an illustration of a flow diagram of an 

example method 602, building on FIG. 6A, with a seismic 

attribute replacement. Method 602 can be implemented 
using a computing system, such as fault predictor system 

800. The steps of method 601 are shown using dashed 
outlined boxes and can be performed as described with 

respect to method 601 unless otherwise denoted below. The 
new steps of method 602 are shown in solid outlined boxes. 

Method 602 starts at step 610 and proceeds through to step 

630. Step 630 can be expanded with a step 632 and a step 
636. Step 632 and step 636 can be performed in various 

orders, and in some aspects, step 632 or step 636 can be 
bypassed. 

[0055] Step 632 can normalize one or more of the seismic 

attributes. The normalization can utilize various baseline 
ranges, for example, 0.0 to 1.0, -1.0 to 1.0, and other 

baseline ranges. The normalization process can improve the 

weighting accuracy given to the seismic attributes. From 
step 632, method 602 can proceed to step 636 or to step 650. 

[0056] Step 636 can compute the importance coeflicient 

for the seismic attributes. The importance coefficient can be 
determined using various decision tree algorithms, such as 

random forest. The importance coefficient can be utilized to 

rank the relative weights of the seismic attributes. In some 
aspects, a standard deviation parameter can be computed for 

each seismic attribute. The importance coefficient and stan- 
dard deviation are part of the seismic attribute data that can 

be used as inputs to a fault predictor DNN, such as fault 
predictor DNN 840 in FIG. 8. From step 636, method 602 

can proceed to step 650 or proceed to a step 640. 

[0057] In step 640, a sub-set of the seismic attributes can 

be selected. The sub-set of seismic attributes can reduce the 
computer resources and computational time by reducing the 

amount of data to be processed. The number of seismic 
attributes selected can be from one to the total number of 

available seismic attributes, where a typical range is three to 

SIX seismic attributes. Additional seismic attributes can be 
utilized, usually with an increase in computational cost and 

time. Typically, the sub-set of seismic attributes can be 
populated by selecting the seismic attributes with the largest 

importance coefficient, e.g., weighting, though other selec- 
tion criteria can be utilized. Method 602 can proceed to step 

650 or to a step 644 from step 640. 

[0058] Instep 644, a replacement of seismic attributes can 

be performed. In the sub-set of seismic attributes, there can 
be two or more attributes that represent a characteristically 

similar attribute and have an approximately equal, or near 
equal, importance coefficient. The multiple similar seismic 

attributes can unfairly influence the importance coeflicient 

weighting within the DNN processing. To improve the DNN 
accuracy, the multiple seismic attributes can be replaced by 

a single seismic attribute that presents a substantially char- 
acteristically similar attribute. This can provide a more 

accurate weighting when processed through the DNN. For 
example, a seismic attribute that can be determined in an 

inline orientation and a crossline orientation can be replaced 

by a single similar seismic attribute that incorporates the 
inline and crossline orientations. From step 644, method 602 

proceeds to step 650 and step 660. 
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[0059] From step 660 method 602 proceeds to a step 665. 
In step 665, the fault probabilities are transformed into a 

fault prediction, which can be represented by a predicted 
new seismic data, such as a three-dimensional image of the 

subterranean formation. The predicted new seismic data can 
be output for further use and analysis, such as by a well 

system operation plan. Method 602 ends at step 680. 

[0060] FIG. 7 is an illustration of a flow diagram of an 
example method 700 for training a fault predictor system. 

Method 700 can be implemented using a computing system, 
such as fault predictor system 800. Method 700 starts at a 

step 710 and proceeds to a step 720. In step 720, one or more 

sets of seismic data can be received. The seismic data can be 
received from a well system, such as a well system control- 

ler, a data center, cloud storage, server, and other data 
storage locations. The received seismic data can be for the 

same or varying subterranean formations. 

[0061] Inastep 730, a set of seismic attributes, for each set 
of seismic data, can be derived. In a step 732, the seismic 

attributes can be normalized using a determined baseline 
range. In a step 736, an importance coefficient and a standard 

deviation parameter can be computed for the selected seis- 

mic attributes. In some aspects, the set of seismic attributes 
used for the sets of seismic data can be reduced, such as 

selecting a sub-set of seismic attributes that have the largest 
importance coefficients. Random forest, decision tree, gra- 

dient boosting, and extra trees are types of classifiers that 
can be used to determine and rank the importance coeffi- 

cients. Other selection techniques can be utilized as well, 

such as selecting seismic attributes that are pertinent for the 
type of mineral or rock which makes up the subterranean 

formation or an analysis by a user. The sub-set of seismic 
attributes does not need to match the sub-set of seismic 

attributes utilized in a subsequent execution of the fault 
prediction system, such as method 602. By reducing the 

number of seismic attributes used as input for training, the 

performance of the training process can be improved while 
reducing the computing resources. 

[0062] Ina step 750, the sets of seismic data and corre- 
sponding sets of seismic attributes (or the corresponding 

sub-sets of seismic attributes, if determined), are trans- 

formed into a tensor form aligning with the input layer of the 
training DNN, and used as the data input for the model. In 

a step 760, the fault prediction model is trained by applying 
synthetic fault labels to the input data. The trained model can 

then be stored and enabled for later use as a trained DNN. 

In some aspects, the training DNN can be the same as the 
fault predictor DNN. Method 700 ends at a step 780. 

[0063] FIG. 8 is an illustration of a block diagram of an 
example fault predictor system 800. Fault predictor system 

800 can be used to train a DNN and to perform analysis of 

seismic data to generate a predicted new seismic data that 
incorporates fault predictions. Fault predictor system 800 

includes a predictor system 810, a training system 815, and 
a trained DNN model 817. 

[0064] Predictor system 810 and training system 815 can 

be the same or separate systems, and each can be a software 
application, a hardware system or circuitry, or various 

combinations thereof. For example, predictor system 810 
can be performed on a central processing unit (CPU), 

graphics processing unit (GPU), or other processing unit. 

Training system 815 can be performed on the same or 
different processing unit as predictor system 810. Similarly, 

predictor system 810 and training system 815 can be part of
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the same software application, can share some software 
features and functions, or be separate software applications. 

[0065] Predictor system 810 includes a seismic data 
receiver 820, a seismic attribute deriver 830, and a fault 

predictor DNN 840. Seismic data receiver 820 is capable of 

receiving seismic data from one or more sources, for 
example, a well site controller, a data center, cloud envi- 

ronment, server, tablet, smartphone, and other devices 
capable of providing seismic data. The seismic data corre- 

lates to a subterranean formation. The seismic data can be 
communicated to seismic attribute deriver 830. Seismic 

attribute deriver 830 can derive one or more seismic attri- 

butes from the seismic data, normalize the seismic attributes, 
determine importance coefficients and standard deviation 

parameters for the seismic attributes, select a sub-set of 
seismic attributes using a specified selection parameter, and 

replace two or more seismic attributes with a single seismic 

attribute, where the seismic attributes are substantially char- 
acteristically similar. 

[0066] Fault predictor DNN 840 can receive the seismic 
data and the adjusted seismic attributes (or a sub-set 

thereof), and using trained DNN model 817, can generate 

parameterized results representing fault probabilities. Pre- 
dictor system 810 can additionally transform the fault prob- 

abilities into fault predictions that can be represented as 
predicted new seismic data, such as an image or a set of data. 

The predicted new seismic data can be output to another 
application, system, device, computing system, communi- 

cation channel, intranet, internet, and other output destina- 

tions for further use, such as to be analyzed or used as inputs 
into an operation plan. 

[0067] Training system 815 includes a training seismic 
data receiver 850, a training seismic attribute deriver 860, 

and a training DNN 870. Training seismic data receiver 850 

is capable of receiving one or more sets of seismic data from 
one or more sources, for example, a well site controller, a 

data center, cloud environment, server, tablet, smartphone, 
and other devices capable of providing seismic data. The set 

of seismic data can represent the same or different subter- 
ranean formations. The seismic data can be communicated 

to training seismic attribute deriver 860. Training seismic 

attribute deriver 860 can derive one or more seismic attri- 
butes from each of the sets of seismic data, normalize the 

seismic attributes, determine importance coefficients and 
standard deviation parameters for each seismic attribute, 

select a sub-set of seismic attributes using a specified 

selection parameter for each set of seismic data, and replace 
two or more seismic attributes with a single seismic attri- 

bute. 

[0068] Training DNN 870 can receive the sets of seismic 

data and the correlated adjusted seismic attributes, and using 

trained DNN model 817, can assign fault labels to the input 
data elements, thereby training trained DNN model 817. In 

some aspects, the assignment of fault labels is performed by 
training DNN 870. In other aspects, the assignment of fault 

labels is performed by a user. 

[0069] Seismic data receiver 820, seismic attribute deriver 
$30, fault predictor DNN 840, training seismic data receiver 

850, training seismic attribute deriver 860, and training 
DNN 870 can be implemented as one or more software 

applications, functions, software libraries, dynamic link 

libraries, modules, dedicated circuitry, or various combina- 
tions thereof. These components can share executable code 

as well. In some aspects, seismic data receiver 820 and 

Jun. 17, 2021 

training seismic data receiver 850 can be the same seismic 
data receiver. In some aspects, seismic attribute deriver 830 

and training seismic attribute deriver 860 can be the same 
seismic attribute deriver. In some aspects, fault predictor 

DNN 840 and training DNN 870 can be the same DNN. In 
some aspects, predictor system 810 and training system 815 

can be the same system. Trained DNN model 817 can be 

various data storage formats and devices, for example, files 
or databases stored on a server, data center, cloud storage, 

other data storage mediums, and combinations thereof. 

[0070] A portion of the above-described apparatus, sys- 
tems or methods may be embodied in or performed by 

various analog or digital data processors, wherein the pro- 
cessors are programmed or store executable programs of 

sequences of software instructions to perform one or more of 
the steps of the methods. A processor may be, for example, 

a programmable logic device such as a programmable array 

logic (PAL), a generic array logic (GAL), a field program- 
mable gate arrays (FPGA), or another type of computer 

processing device (CPD). The software instructions of such 
programs may represent algorithms and be encoded in 

machine-executable form on non-transitory digital data stor- 
age media, e.g., magnetic or optical disks, random-access 

memory (RAM), magnetic hard disks, flash memories, and/ 

or read-only memory (ROM), to enable various types of 
digital data processors or computers to perform one, mul- 

tiple or all of the steps of one or more of the above-described 
methods, or functions, systems or apparatuses described 

herein. 

[0071] Portions of disclosed examples or embodiments 
may relate to computer storage products with a non-transi- 

tory computer-readable medium that have program code 
thereon for performing various computer-implemented 

operations that embody a part of an apparatus, device or 

carry out the steps of a method set forth herein. Non- 
transitory used herein refers to all computer-readable media 

except for transitory, propagating signals. Examples of non- 
transitory computer-readable media include, but are not 

limited to: magnetic media such as hard disks, floppy disks, 
and magnetic tape; optical media such as CD-ROM disks; 

magneto-optical media such as floppy disks; and hardware 

devices that are specially configured to store and execute 
program code, such as ROM and RAM devices. Examples 

of program code include both machine code, such as pro- 
duced by a compiler, and files containing higher level code 

that may be executed by the computer using an interpreter. 

[0072] In interpreting the disclosure, all terms should be 
interpreted in the broadest possible manner consistent with 

the context. In particular, the terms “comprises” and “com- 
prising” should be interpreted as referring to elements, 

components, or steps in a non-exclusive manner, indicating 

that the referenced elements, components, or steps may be 
present, or utilized, or combined with other elements, com- 

ponents, or steps that are not expressly referenced. 

[0073] Those skilled in the art to which this application 
relates will appreciate that other and further additions, 

deletions, substitutions and modifications may be made to 
the described embodiments. It is also to be understood that 

the terminology used herein is for the purpose of describing 
particular embodiments only, and is not intended to be 

limiting, since the scope of the present disclosure will be 

limited only by the claims. Unless defined otherwise, all 
technical and scientific terms used herein have the same 

meaning as commonly understood by one of ordinary skill
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in the art to which this disclosure belongs. Although any 
methods and materials similar or equivalent to those 

described herein can also be used in the practice or testing 
of the present disclosure, a limited number of the exemplary 

methods and materials are described herein. 

[0074] Various aspects of the disclosure can be claimed 
including those noted in the summary. Each of the aspects 

noted in the summary may have one or more of the elements 
of the dependent claims presented below in combination. 

What is claimed is: 

1. A method to predict subterranean formation faults, 

comprising: 

receiving seismic data correlating to a subterranean for- 

mation; 

deriving a set of seismic attributes from the seismic data; 

determining parameterized results by analyzing the seis- 

mic data and the set of seismic attributes using a deep 

learning neural network (DNN), wherein the DNN has 
been trained using previous seismic data and previous 

seismic attributes; and 

calculating one or more fault probabilities of the subter- 

ranean formation utilizing the parameterized results. 

2. The method as recited in claim 1, further comprising: 

normalizing each seismic attribute in the set of seismic 

attributes prior to determining the parameterized 

results. 

3. The method as recited in claim 1, further comprising: 

transforming the one or more fault probabilities as a 

predicted new seismic data and utilizing the predicted 
new seismic data to modify an operational plan of a 

well system. 

4. The method as recited in claim 1, further comprising: 

computing an importance coefficient for each seismic 

attribute in the set of seismic attributes, wherein the 
importance coefficient is utilized by the DNN. 

5. The method as recited in claim 4, further comprising: 

computing a standard deviation parameter for each 
respective importance coefficient, wherein the standard 

deviation parameter is utilized by the DNN. 

6. The method as recited in claim 1, further comprising: 

selecting a sub-set of seismic attributes from the set of 

seismic attributes, wherein determining the parameter- 

ized results utilizes the sub-set of seismic attributes as 
the set of seismic attributes. 

7. The method as recited in claim 6, further comprising: 

replacing two or more characteristically similar seismic 
attributes in the sub-set of seismic attributes with a 

substantially characteristically similar non-selected 
seismic attribute. 

8. The method as recited in claim 7, wherein a user review 

is utilized for replacing the two or more characteristically 
similar seismic attributes. 

9. The method as recited in claim 6, wherein a number of 

seismic attributes in the sub-set of seismic attributes is 
determined by a user input or a computational time limit 

parameter. 

10. The method as recited in claim 6, wherein the sub-set 
of seismic attributes is selected using one of a random forest 

classifier, a decision tree classifier, a gradient boosting 
classifier, or an extra trees classifier. 

11. The method as recited in claim 1, wherein the deriving 

the set of seismic attributes utilizes one or more of a 
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frequency parameter, a density parameter, an amplitude 
parameter, a thermal parameter, a radioactivity parameter, 

and an absorption parameter. 
12. A method to train a fault predictor deep learning 

neural network (DNN), comprising: 
receiving one or more sets of seismic data correlating to 

one or more respective subterranean formations, 

wherein the subterranean formations are part of one or 
more well systems; 

deriving a set of seismic attributes for each of the one or 
more sets of seismic data; 

normalizing seismic attributes in the set of seismic attri- 
butes; 

generating multi-channel data, wherein the multi-channel 

data is derived from the one or more sets of seismic 
data and respective sets of seismic attributes; and 

training the DNN by analyzing the multi-channel data and 
applying fault labels. 

13. The method as recited in claim 12, further comprising: 

computing an importance coefficient for seismic attributes 
in each set of seismic attributes, wherein the impor- 

tance coefficient is utilized for training the DNN. 
14. The method as recited in claim 12, further comprising: 

storing the trained DNN; and 
enabling the trained DNN for use. 

15. The method as recited in claim 12, wherein the fault 

labels are assigned utilizing user input. 

16. A system to predict faults, comprising: 

a seismic data receiver, capable of receiving seismic data 
from one or more sources, wherein the seismic data 

correlates to a subterranean formation; 

a seismic attribute deriver, capable to derive a set of 
seismic attributes from each of the received seismic 

data; and 

a fault predictor deep learning neural network (DNN), 

capable of analyzing the received seismic data and each 

of the sets of seismic attributes utilizing a trained DNN 
model, and providing parameterized results represent- 

ing fault probabilities. 

17. The system as recited in claim 16, further comprising: 

a predictor system, capable of receiving and transforming 

the fault probabilities and outputting new seismic data 
representing predicted faults within the subterranean 

formation, wherein the new seismic data is utilized by 
a well system operation plan. 

18. The system as recited in claim 16, further comprising: 

a training seismic data receiver, capable of receiving one 
or more sets of seismic data from one or more sources, 

wherein the one or more sets of seismic data correlates 
to one or more subterranean locations; 

a training seismic attribute deriver, capable of deriving a 

set of seismic attributes from each of the one or more 
sets of seismic data received from the training seismic 

data receiver, and normalizing seismic attributes in the 
sets of seismic attributes; and 

a training DNN, capable of analyzing the one or more sets 

of seismic data and the one or more derived sets of 
seismic attributes, and assign one or more fault labels. 

19. The system as recited in claim 18, wherein the training 
seismic attribute deriver is further capable of determining an 

importance coefficient and a standard deviation for the 

seismic attributes. 

20. The system as recited in claim 18, wherein the training 

DNN is the fault predictor DNN.
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21. The system as recited in claim 16, wherein the seismic 
attribute deriver is further capable of performing data nor- 
malization of seismic attributes and selecting a sub-set of 
seismic attributes from each of the sets of seismic attributes, 

where the sub-set of seismic attributes are used by the fault 
predictor DNN. 

22. The system as recited in claim 16, wherein the seismic 
attribute deriver is further capable of replacing, utilizing a 

seismic attribute characteristic, two or more seismic attri- 

butes with a previously non-selected seismic attribute. 
23. The system as recited in claim 16, wherein the seismic 

attribute deriver is further capable to compute an importance 
coefficient and a standard deviation to seismic attributes, 

where the importance coefficient and the standard deviation 
are utilized by the fault predictor DNN. 

24. The system as recited in claim 16, wherein the fault 

predictor DNN is a convolutional neural network. 
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25. A computer program product having a series of 
operating instructions stored on a non-transitory computer- 

readable medium that directs a data processing apparatus 
when executed thereby to perform operations to predict 

subterranean formation faults, the operations comprising: 

receiving seismic data correlating to a subterranean for- 
mation; 

deriving a set of seismic attributes from the seismic data; 

determining parameterized results by analyzing the seis- 
mic data and the set of seismic attributes using a deep 

learning neural network (DNN), wherein the DNN has 
been trained using previous seismic data and previous 

seismic attributes; and 

computing one or more fault probabilities of the subter- 
ranean formation utilizing the parameterized results. 

* * * * *


