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Abstract

Summary

Deep learning approaches have recently shown success in automating feature extraction from seismic data
and saving substantial interpretation time for geoscientists, especially for fault prediction. However, fault
prediction results based on seismic data are characterized by the low resolution of fault probability that could
extend the real fault plane out of its true range. Additionally, the low fidelity of the fault prediction results
creates uncertainty locating the true fault. In this paper, we analyze thirty well-known seismic attributes
and try to utilize the natural property of each attribute to help build and train a deep neural network to
improve the resolution of fault prediction. We trained five machine learning classifiers separately to analyze
the feature importance of each attribute to the predictability of fault planes. We then selected several of the
most important attributes as additional inputs for a multi-channel convolutional neural network to improve
the accuracy of fault prediction. Several synthetic and field data tests are tested to validate our approach.

Methods

Seismic attributes, a property extracted from seismic data, is used to analyze subsurface structures and
reservoir characterization, helping geological interpretation in different exploration areas. They can be
analyzed to enhance information that might be too subtle in a traditional amplitude image and increases
the visibility of different subsurface objects. Seismic attributes can be divided into different classes, such
as amplitude, frequency, phase, and structure. In most cases, time-based attributes are related to structure
whilst amplitude-based attributes are designed to classify stratigraphy. Roden et al. (2015) described several
methodologies to analyze combinations of seismic attributes of any kind for meaningful patterns that
correspond to geological features. They used principal component analysis (PCA) and self-organizing maps
(SOMs) to analyze multiple attributes in the interpretation workflow. Emujakporue and Enyenihi (2020)
extracted and analyzed several seismic attributes from field data to obtain information about the structures,
stratigraphy, and hydrocarbon potential from available seismic and a suite of well log data. They showed
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that different attributes provided different importance levels to enhance the visibility of the geometrical
characteristics of seismic events and are sensitive to the lateral variation of azimuth, continuity, similarity,
curvature, and other subsurface properties. In this paper, we generated synthetic seismic data (Wu et al.,
2019) and calculated over thirty of the most popular attributes representing different categories. The ground-
truth fault plane is delineated from the synthetic seismic data (Figure 1). We consider those attribute cubes
as training data and the ground truth fault as a training label. Table 1 describes all attributes we generated
in different categories and Figure 2 shows all the attributes we used for feature importance analysis.
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Figure 2—Thirty seismic attributes, derived from seismic in Figure 1, used for feature importance analysis.
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Table 1—Seismic attributes used for feature importance analysis.

Seismic Attributes
Amplitude Frequency Phase Structure Others
Reflection Strength Average Frequency Apparent Polarity Azimuth Dull Surface
Relative Amp Change Instantaneous Cosine of Phase Dip Shiny Surface
Frequency
Response Amplitude Response Frequency Instantaneous Phase Discontinuity Semi-Shiny Surface
RMS Amplitude RMS Frequency Response Phase Discontinuity Along | Arc Length
Dip
Quality factor Thin Bed Indicator Mean Curvanire Energy half-time
Most Negative / Relative Acoustic
Positive Curvature Impedance
Relative Amp Change Sweetness
in X /Y direction

We then use the above generated attributes as training data and labels to feed into several ensemble
learning classifiers. Ensemble learning is a model that makes predictions based on several different models
(Rokach, 2010). By combing individual models, the ensembled model could perform more flexibly and is
less data sensitive. Bagging and Boosting are considered as two of the most popular ensemble methods.
Bagging represents a workflow to train a bunch of individual models in a parallel way, where each model
is trained by a random subset of the data, such as the Random Forest and Decision Tree method. Boosting
describes a training process to train a series of individual models sequentially. Each model learns from
mistakes made by the previous model, such as Adaptive Boosting and Gradient Boosting method. The
reason we selected multiple ensemble classifiers is to avoid any bias from specific ensemble classifiers
which could be sensitive to the seismic attributes and affect the accuracy of importance analysis. Figure 3
describes that workflow to use several ensemble classifiers to analyze the predictability towards each of
the attributes in terms of fault prediction. After passing each attribute through the classifier, the importance
factor in each classifier is measured by observing the effect on model accuracy by randomly shuffling
each predictor variable. The mechanism is designed to measure how effective each attribute is at reducing
uncertainty with different classifiers.
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Training data Training label
Attribute category: Amplitude Attribute category: Frequency -:.'__'-_ _"_-.';-T
1. Reflection Strength 15, Average Frequency
2. Relative Amplinide Change 16. Instantaneous Frequency
3. Response Amplitude 17. Response Frequency
4. RMS Amplitude 18. RMS Frequency
Seismic data 5 Seismic Amplitude 19; Thin Bed Indicsior Random Forest Classifier

Aftribute category: Structure Attribute category: Phase

Decision Tree Classifier

6. Azimuth 20. Apparent Polarity
7. Dip 21. Cosine of Phase

8. Discontinuity 22, Instantaneous Phase

9. Discontinuity Along Dip 23. Response Phase AdaBoosting Classifier

10. Mean Curvature
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30. Sweetness

Figure 3—A workflow to analyze the importance of each seismic attribute for the predictability of fault interpretation.

Results

After training the model with different classifiers, we obtained the importance factors for each attribute.
These importance factors represent the relative predictive strengths of the feature, or attribute, relative
to the fault plane. Figure 4 shows a combined result from several ensemble classifiers. It describes the
relationship between the importance factor and seismic attribute. Among all attributes, discontinuity-along-
dip always provides the highest rank for all classifiers, followed by other attributes, such as positive-
curvature and relative-amplitude-change. The attribute discontinuity-along-dip accounts for reflection dip
and produces cleaner images than standard discontinuity (Hale, 2009), which highlights faults, channels,
and diapirs. Other attributes, like most-positive-curvature, record the most positive rate of change of the
reflection dip and azimuth, highlights reflection bumps in seismic reflection, and are closely related to
the attribute most-negative-curvature, which highlights reflection sags (Jiang and Norlund, 2020). In a
geological environment, normal faults often exhibit positive curvature on the up-thrown side and negative
curvature on the down-thrown side. This is an indicator for other structure-related attributes to delineate
fault images. Another attribute which ranks generally higher than others in this test is the relative amplitude
change. This attribute serves as a directional high-resolution discontinuity attribute that reveals details in
faults and channels along with time or depth and exhibits similar effects to the coherence amplitude gradient.
In Figure 4, we normalized the bar of discontinuity-along-dip attribute for visualization purposes. Those
high-ranking attributes represent a quantitative measure of a fault's character of interest which means they
could help evaluate geological structure and improve the accuracy of fault interpretation. The higher the
bar, the more important the attribute contributes to the fault interpretation. Although we implemented five
different ensemble classifiers, the result shows a similar ranking across different attributes.
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Figure 4—The comparison of importance index between different attributes among all five different ensemble classifiers.
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We then consider those attributes as additional channels, along with the original seismic, to feed into a
deep learning neural network (Jiang and Norlund, 2021) to train the model and predict faults in a dataset
from the northwest of Australia. The prediction result (Figure 5) is improved, including better continuity
of fault segments, and reveals several missing fault segments which the seismic-only model missed. We
conclude that seismic attributes have a lot of potentials to help in seismic feature extraction and pattern
segmentation by implementing deep learning neural networks.
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Figure 5—(Top) Fault probability map generated by a machine learning model trained by seismic-only data; (Bottom)
Fault probability map generated by a machine learning model trained by five attributes simultaneously. Those attributes
are seismic amplitude, discontinuity-along-dip, most-positive-curvature, relative-amplitude-change, and sweetness.

Discussions and Conclusions

The interpretation of faults in 3D seismic data is an important component of hydrocarbon exploration and
development workflows. Machine learning-based fault interpretation provides an opportunity to leverage
seismic attributes to help in the process of seismic feature engineering to extract geological characteristics
and properties, prepare the input data in the forms of structured columns, and improve the performance
of different machine learning models. Some techniques, such as ensemble classifiers, one-hot encoding,
feature split, are shown to provide great improvement in different machine learning applications to decrease
uncertainty in geophysical interpretation. Our proposed method of analyzing various seismic attributes,
could also be applied to assist other interpretation projects, such as salt body detection (Jiang et al.,
2020), lithology discrimination (Walker et al., 2005), and stratigraphic feature characterization (Chopra and
Marfurt, 2008).

In this paper, we trained five ensemble machine learning classifiers to analyze the feature importance of
each seismic attribute to the predictability of fault planes, then selected the attributes with the highest rank,
along with seismic data, to feed into a multi-channel convolutional neural network to train the model. The
selected attributes highlight the structure-property of normal faults, which often exhibit positive curvature
on the up-thrown side and negative curvature on the down-thrown side. Our importance ranking system
also confirms the effectiveness of structure-related attributes that could contribute more to the geophysical

220z Ae|N 90 uo Jesn dnoug seoineg ABieuz uoungiiieH Aq ypd-es-Gy | zz-01dl/¥8061.92/2004S60S L €00/ LdIZZ-€/D1dIZZ/4Ppd-sBuipeso0id/4NOD LdI/B10 05edsuoy/:dny woy pspeojumod



IPTC-22145-EA 7

interpretation life cycle. The field test from Australia shows that the model trained by multiple attributes
improved significantly on the predicted fault probability map over the seismic-only model with better
imaging of fault planes. This could also simplify the fault extraction workflow to extract continuous and
cleaner fault planes for the next velocity model building process.
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