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Abstract

One of the significant challenges in seismic interpretation is to accurately delineate subsurface features and
quantify the uncertainty of the interpretation results due to the non-unique nature of seismic processing and
imaging. Salt interpretation usually has limited resolution and relies upon an interpreter's experience with a
limited set of geological concepts. In seismic interpretation, especially salt interpretation, researchers have
focused on improving the accuracy of pixel predictions by developing various neural network architectures,
such as Dense U-Net, Attention U-Net, Residual U-Net, etc. Studying uncertainty quantification of point
predictions is important in assessing prediction quality. In this paper, we implemented Monte-Carlo dropout
analysis in the variational inference setting with a Bayesian Neural network (BNN) to analyze the aleatoric
and epistemic uncertainty of the salt classification. Our approach helps to analyze the posterior distribution
from the variational inference and quantitively measure the range of predictive probability distribution.

Introduction

Traditionally, uncertainty is modeled in a probabilistic way by statistics and mathematics. In the context of
machine learning, one source of uncertainty occurs when training data and the test data are mismatched. In
some cases, the classes overlap due to noise in the data. In the history of deep learning, machine-based image
segmentation has beaten human performance in different challenges, e.g., ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). The improvement was hit by more advanced architectures. Abdar et al.,
2021 review various successful deep learning applications ranging from medical diagnosis to autonomous
vehicles, from game-playing to machine translations. However, how to build a deep neural model with the
quantification of reliability and robustness is often ignored. Researchers (e.g., Seoh et al., 2020, Jospin et
al., 2022) have been striving to comprehend the uncertainty of predictions in deep neural networks.

Bayesian neural networks (BNNs) are stochastic neural networks trained using a Bayesian approach
(Lampinen and Vehtari, 2001, Goan and Fookes, 2020). In BNNs, the weights and outputs are treated as the
variables, and the goal is to discover the marginal distributions that best fit the data. The distribution will
be used to quantify the uncertainty introduced by the data and models to explain the trustworthiness of the
prediction. Table 1 compares a standard Point Estimate Neural Network (PENNs) and BNNs.
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Table 1—The comparison between PENNs and BNNs for classification.

PENNs BNNs
Goal Optimization/Minimization Marginalization
Weight A single set value Probabilistic distribution
Regularization Penalization in Loss Prior beliefs
Training Gradient descent Markov Chain Monte Carlo (MCMC)
methods Back-propagation Variational Inference

(Monte Carlo Dropout)
Bayes-by-backprop
Normalizing Flows

Estimate Maximum likelihood estimators Maximum A Posteriori

Predictive distribution

Bayesian methods are mathematically sophisticated and allow rich probability interpretations by
obtaining a predictive distribution. Blundell et al. (2015) developed a back-propagation compatible
algorithm for learning a probability distribution on the weights of a neural network, called Bayes by
Backprop. It regularizes the weights by minimizing a compression cost, known as the variational free energy
or the expected lower bound on the marginal likelihood. Gal (2016) showed that a specific optimization
of dropout neural networks is equivalent to Bayesian learning via variational inference with a specific
variational distribution. He casts the deep learning models as Bayesian models without changing either the
models or the optimization. Kwon et al. (2018) proposed a method to quantify uncertainties in classification
using BNNs to exploit the relationship between the variance and the mean of a multinomial random variable
and avoid estimating extra parameters for the variance.

Kendall and Gal (2017) decomposed the predictive uncertainty into two types of uncertainties, Aleatoric
uncertainty, and Epistemic uncertainty, by explicitly modeling the variability of the last layer of neural
network outputs. Aleatoric uncertainty captures the inherent randomness of distribution from the natural
stochasticity of the data or data uncertainty. In Statistics, it is representative of unknowns that differ each time
we train the model, and we could regard it as the confidence level of the prediction. Epistemic uncertainty
expresses in the spread of the predicted probabilities of one class or model uncertainty. In deep learning,
epistemic uncertainty refers to the uncertainty of the model weights. Every time we train the model, the
weights may vary slightly. This variation is called epistemic uncertainty (Figure 1).
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Figure 1—An example of aleatoric and epistemic uncertainty distribution. (After Tuna et al., 2022)

In this paper, we implemented Monte-Carlo dropout variation in our deep learning model to capture
the relationship between the variance and the mean of a multinomial random variable. This generates the
variability of the predictive probability and captures both uncertainties. The estimated uncertainty could be
used to evaluate the prediction result where high uncertainty and low probability exist.

Methods

Point Estimate Neural Network

The base neural network, or point estimate neural network, used in this paper is shown in Figure 2. The
architecture of our neural net is based on U-Net (Ronneberger et al., 2015) with additional residual blocks
and multiple pooling and dropout layers. The point estimate neural network is used to classify each point,
or pixel, in the seismic data to its labeled class, such as falt or non-fault, salt or non-salt. The input is a
seismic section where each pixel is assigned an initial weighting coefficient and fed into a neural network.
After downsampling convolution, upsampling convolution, and concatenation, the weighting coefficient
is updated to optimize by the loss function. The output will be a pixel-wise prediction generated by a
softmax layer, which means each pixel represents a probability of "salt" or "non-salt". During training,
weighting coefficients are fixed during each epoch, only updating when back-propagating. Point estimate
neural network has shown outstanding performance in different geophysical applications but lacks to assess
uncertainty for probabilistic interpretations. The bayesian neural network could be an advanced neural
network to capture uncertainties in seismic classification problems.
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Figure 2—The architecture of Point Estimate Neural Network.

Bayesian Neural Networks

The Bayesian paradigm in Statistics is based on two ideas: The first is that probability is a measure of belief
in the occurrence of events, rather than the limit in the frequency of occurrence when the number of samples
goes towards infinity. The second idea is that prior beliefs influence posterior beliefs, resulting in posterior
distribution:

N
P(Dw)P(w) Hi: Py i, 0)P(w) 1
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And predictive distribution:
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For a new input x* and a new output y*. Here DZ{(xi, yl.)} is a realization of independently and

=1
identically distributed random variables where x; are the ith input and y; are the corresponding output. N
denotes the sample size. In the Bayesian neural network model, a prior distribution P(®) is placed on a
parameter vector w € €, which are weights and bias vectors in a neural network (Kwon et al., 2018).

An alternative Bayesian method is a variational inference (Blundell et al., 2015) which approximates the
posterior distribution by a tractable variational distribution g, (@) indexed by a variational parameter 6. The
measure of closeness is commonly used by the Kullback-Leibler (KL) divergence (Kullback and Leibler,
1951). It measures the differences between probability distributions based on Shannon's information theory
(Shannon, 1948). The KL-divergence represents the average number of additional bits required to encode
a sample from P. For Bayesian inference, it is computed between ¢, (@) and P(w|D) as:

q,(®)
KLig (o)P(0D); = Qqe(w)IOgmdw (3)

The most popular optimization method is stochastic variational inference (Hoffman et al., 2013), which
means the stochastic gradient descent algorithm is applied to variational inference. Variational inference
converts standard Bayesian learning from integration to optimization problems, which is suited for batch
learning due to MCMC sampling.
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Aleatoric uncertainty and Epistemic uncertainty

In exploration geophysics, recent advances in seismic acquisition and imaging algorithms could
significantly improve the resolution. However, there is still ambiguity in velocity model building caused
by the inherent non-uniqueness of the seismic experiment (Osypov et al., 2013) or misinterpretation due to
the complex geological settings (Alcalde et al., 2017). Recent development in computer vision, especially
the implementation of deep learning models, can learn powerful representations to map high dimensional
data to an array of output. Those deep learning models have been used in many geophysical areas (e.g., Wu
et al., 2019, Jiang et al., 2020).

Understanding uncertainty, captured with Bayesian modeling as aleatoric and epistemic uncertainty, is
critical, especially in the context of interpreting seismic images. The goal of quantifying uncertainty is
primarily divided into regression settings such as depth regression, trace interpolation, and classification
settings such as semantic seismic segmentation for interpretation. Those uncertainties are formalized as
probability distributions over either model parameters or model outputs. Kendall and Gal (2017) combined
aleatoric and epistemic uncertainty in one model by applying Bayesian inferences. At inference, the
variational predictive distribution approximating the predictive distribution.

|3 ]y 1V sk A
g ") = IQP(y X ol oo =1, R, i) 4)

. AL _r . .
Where a set of realized vectors {Wf}z= |18 randomly drawn from the variational distribution ¢, (@) with

the pre-defined sampling number 7. Kendall and Gal (2017) constructed a Bayesian neural network model
with the last layer before activation consisting of the mean and variance of logits:

T T
T2, diag@)+ 1Y, (=, ~7' (5)

T
Where x4 and ¢? represent the mean and the variance, and ﬁZZHﬂ Z | T. The first part of the above

equation represents aleatoric uncertainty, and the second part represents epistemic uncertainty. Equation (5)
models the variability of the linear predictors, not the predictive probabilities, e.g., salt prediction. Kwon et
al. (2018) proposed an estimator for predictive uncertainty by

_l T . A AN _1 r ” =Y N 7
T z . diag(p) = p,p,T+ TZH(pt —PXp,—P) (6)

Where p is the probability output from the network, p = p(W,) = Softmax{ /" ]a;en dall x*)t where f ]a;en dall(x*)

are the pre-activated linear output of the neural network proposed by Kendall and Gal (2017).

In this paper, we implemented Equation (6) in a deep learning neural network architecture proposed by
Jiang et al. (2020) for salt prediction and uncertainty quantification. The task is to classify salt and non-salt
regions as a binary classification from seismic data and estimate the aleatoric and epistemic uncertainty. We
added a series of dropout layers after convolutional layers with the same kernel in the architecture (Figure
3). Dropout has initially been proposed as a regularization method. It works by applying multiplicative
noise to the target layer and is widely used to solve over-fitting problems in deep neural networks. Then we
run the prediction process T times to simulate the Monte Carlo dropout (MC-Dropout). MC-Dropout is a
variational inference with a distribution defined for each weight matrix. It is straightforward to implement,
requires little additional knowledge compared with traditional methods, and can easily transform a model
into a BNN. In this paper, we implemented MC-Dropout to analyze the binary classification result and draw
the uncertainty maps.
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Figure 3—A neural network architecture includes several dropout layers (After Jiang and Norland, 2021).

Examples

We used the synthetic SEG Advanced Modeling (SEAM) dataset as an example to illustrate our method and
perform uncertainty analysis. Figure 4(a) shows a seismic section from SEAM data. The goal is to classify
the seismic data as salt or non-salt. We randomly picked ~3% data as the training dataset and converted the
velocity model to a binary mask. We first trained the neural network with an epoch of 70 and a learning rate
of 0.0001. During the prediction process, we literately perform prediction T times (as T = 10 in this case).
The prediction from each sampling will be used as input to Equation (6).
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Figure 4—The uncertainty analysis of seismic salt classification by deep learning. (a)
Original seismic data; (b) Zoom-in seismic data; (c) Binary prediction, where black
color represents the salt body. (d) Aleatoric uncertainty; (e) Epistemic uncertainty.
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From Figure 4, we can observe that the primary source of uncertainty comes from the aleatoric part,
which indicates our training data may not be sufficient to represent all features in this area, or more training
data may be needed. The epistemic part shows relatively low uncertainty, representing that our model
parameterization is relatively stable with current training data. The boundaries in the uncertainty maps show
more uncertainty than the interior regions. Those uncertainty maps provide extra information in addition
to the prediction map. Compared with the ground truth, areas where the prediction map disagrees identify
the misclassified region in the uncertainty maps. Those maps also reflect a lack of confidence around the
incorrectly identified region. The future work will focus on implementing uncertainty maps to help refine
the prediction result and correct where areas are misclassified.

Figure 5 shows the full prediction with its uncertainty quantification maps but applied different colormaps
to uncertainty for better visualization on a large scale. In Figure 5(b), the salt body was predicted accurately
for both middle salt and salt basement. Figures 5(c) and 5(d) represent aleatoric uncertainty and epistemic
uncertainty derived from Equation (6). The total uncertainty for this dataset is the sum of two types of
uncertainty. In this process, we adopt the standard classification model to marginalize over intermediate
regression uncertainty placed over the logit space and passed through a softmax operation to form a
probability vector p. The result shows that aleatoric uncertainty can capture many aspects of salt prediction.
For example, Figure 5(c) shows that aleatoric uncertainty is more significant for strong reflective surfaces
and patch boundaries. When the prediction map disagrees with the ground truth, the uncertainty maps
identify the interior salt regions at the base salt, misclassified by the prediction map. Since aleatoric
uncertainty measures how data affects the prediction accuracy, providing more training data to train a deep
learning model should improve the prediction accuracy and reduce uncertainty. On the other hand, epistemic
uncertainty captures difficulty due to a mismatch of data and model.

Crossline No Crossline No. 595 Crossline No. Crossline No 599

<~

Depth

v r

Figure 5—Synthetic test on SEAM dataset. (a) The original seismic data; (b) The
binary prediction result. (c) Aleatoric uncertainty; (d) Epistemic uncertainty.

In this case, we consider the total uncertainty map as a proxy to help identify areas where false positives
exist. Figure 6(c) is updated by applying the total uncertainty map (Figure 6b) to the initial classification
result (Figure 6a). Some false positives in salt and non-salt areas are reduced, which could further improve
the accuracy of prediction by deep learning neural network.
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Figure 6—Implementation of uncertainty maps to filter out false positives. (a) The initial
classification result; (b) Total uncertainty map; (c) The updated result filtered by total
uncertainty map where black color is the salt body regions and white color is non-salt regions.

We assessed the models using MC-dropout with sampling number T = 10 forward passes. Each pass
evaluated the model and got a mean and standard deviation for the test error. The aleatoric and epistemic
uncertainty is calculated based on the predictive mean and the standard deviation resulting from the multiple
repetitions of the experiments to see if the pre-trained model is statistically significant. We observe that
the updated classification result by MC-dropout shows significant improvement comparing with the initial
classification result.Greater sampling number T will bring more confidence to evaluate uncertainty in this
scenario and could be potentially helpful for multi-facies or multi-class classification projects.

A big challenge in seismic interpretation is obtaining labeled data. This could be a laborious and tedious
process. Manually labeling data could make the development of an automated seismic interpretation system
uneconomical and degrade the effectiveness of machine learning applications. A framework, where a model
could learn from small amounts of data and choose by itself where the seismic would like the user to
label will be an optimal design in machine learning applications, even for a more comprehensive class of
problems, such as seismic processing, imaging, and reservoir simulation. This framework is called deep
active learning (Hemmer et al., 2020). It is helpful to train on a small amount of data and an acquisition
function, based on the model's uncertainty, to decide what data points are required to have a geologist label.
Therefore, a Bayesian-based neural network can work with a small amount of data and possesses uncertain
information that can be used with existing acquisition function, a function of inputs that the neural network
uses to decide where to query next. A measure of expressivity in characterizes the complexity of functions
that can possibly be computed by a parametric function, such as neural network. Deep neural networks are
sufficiently expressive for most supervised problems. MC-Dropout method may lack to express complex
manifolds that are nearly indistinguishable from real data. The future research will be focused on how to
build a generative model to analyze posterior distribution from sampling methods and express complex
manifolds in an invertible neural network.

Conclusions

We present an approach to evaluate the uncertainty quantification in a standard neural network and to
quantify the machine learning classification in salt prediction by applying a Monte Carlo dropout analysis in
the variational inference setting. The advantage of this method in seismic interpretation is that it expresses
the inherent variability to understand the distribution of the predictive results and is considered a necessary
component for a Bayesian deep neural network. Understanding the underlying principles leading to good
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models allows us to improve upon them. The performance of dropout in terms of the predictive mean and
variance is assessed, implementation of uncertainty maps as a proxy to filter out false positives should be
considered as a standard post-processing workflow for seismic interpretation. Those uncertainty maps are
a good indicator for an acquisition function for deep active learning and accelerate the automation of the
seismic interpretation cycle.
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