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1 
FACILITATING HYDROCARBON 

EXPLORATION AND EXTRACTION BY 

APPLYING A MACHINE-LEARNING MODEL 

TO SEISMIC DATA 

TECHNICAL FIELD 

The present disclosure relates generally to hydrocarbon 

exploration and extraction. More specifically, but not by way 
of limitation, this disclosure relates to facilitating hydrocar- 

bon exploration or extraction by applying a machine-learn- 

ing model to seismic data. 

BACKGROUND 

Hydrocarbon exploration is the search for hydrocarbons 
(e.g., oil or gas) within a subterranean formation. The search 

for hydrocarbons relies heavily on the chemical and physical 
properties of subterranean formations. Well operators can 

use a variety of tools to measure the chemical and physical 

properties of the subterranean formation. These measure- 
ments can then be interpreted to determine if a subterranean 

formation has hydrocarbons. The measurements can also be 
interpreted to determine if a subterranean formation is stable 

enough to sustain hydrocarbon-extraction operations, such 
as drilling, completion, and production. Incorrect interpre- 

tation of such measurements can result in poor hydrocarbon 

production and, in some cases, catastrophic wellbore fail- 
ures. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 depicts an example of an environment including a 

system for facilitating hydrocarbon exploration and extrac- 

tion according to some aspects of the present disclosure. 
FIG. 2 depicts a block diagram of an example of a 

computing device according to some aspects of the present 
disclosure. 

FIG. 3 depicts a flow chart of an example of a process 
according to some aspects of the present disclosure. 

FIG. 4 depicts an example of a machine-learning model 

according to some aspects of the present disclosure. 
FIG. 5 depicts an example of seismic data according to 

some aspects of the present disclosure. 
FIG. 6 depicts examples of seismic-attribute datasets 

according to some aspects of the present disclosure. 
FIG. 7 depicts examples of processing operations accord- 

ing to some aspects. 

DETAILED DESCRIPTION 

Certain aspects and features of the present disclosure 

relate to facilitating hydrocarbon exploration or extraction 
by applying a machine-learning model to seismic data. 

Seismic data is multidimensional data generated using prin- 
ciples of seismology that indicates the physical properties of 

a subsurface formation. As one particular example, a 

machine-learning model can receive input including seismic 
data characterizing a target area of a subterranean formation. 

In response to receiving the seismic data, the machine- 
learning model can generate an output indicating what types 

of geological bodes are present in the target area. A geo- 
logical body is a geological substance other than rock that is 

present in a subterranean formation. Exemplary types of 

geological bodies can include sand bodies, salt bodies, water 
bodies, gas bodies, and oil bodies. The output of the 

machine-learning model can be used to determine whether 
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2 
the target area contains hydrocarbons and is stable enough to 

sustain hydrocarbon-extraction operations. 

The machine-learning model can be trained using a train- 

ing dataset. The training dataset can include seismic datasets 

collected from various geographical regions for subterra- 

nean formations made of different rock types and geological 

bodies. Each of the seismic datasets can be assigned one or 

more labels in the training dataset indicating the type or 

types of geological bodies that are reflected in the seismic 

datasets. A supervised training method can be applied to 

train the machine-learning model based on the training 

dataset. 

In some examples, a computing device can execute (e.g., 

automatically execute) one or more processing operations 

based on the output of the machine-learning model. For 

example, the computing device can determine that a target 

type of geological body is present in a target area of a 

subterranean formation based on the output from the 

machine-learning model. An example of the target type of 

geological body can be a salt body. The computing device 

can then apply an image-analysis algorithm to the input 
seismic data to determine an outer boundary of the target 

type of geological body in the seismic data. Examples of the 

image-analysis algorithm can include a smoothing algo- 
rithm, an edge-detection algorithm, a segmentation algo- 

rithm, or any combination of these. After determining the 
outer boundary, the computing device can generate a graphi- 

cal user interface (GUI) that highlights the outer boundary 
relative to a remainder of the seismic data. For example, the 

computing device can generate a GUI that overlays an 

outline of the outer boundary on top of the seismic data. As 
another example, the computing device can generate a GUI 

in which seismic content external to the outer boundary is 
removed from the seismic data. Highlighting the outer 

boundary can assist the well planner in understanding the 

seismic data to facilitate wellbore planning and hydrocarbon 
extraction. 

Additionally or alternatively, the one or more processing 
operations can involve generating a three-dimensional 3D) 

simulation based on the input seismic data and the output 
from the machine-learning model. The computing device 

can execute the 3D simulation to determine simulated prop- 

erties of the target area of the subterranean formation. The 
computing device can then provide the simulated properties 

to the well planner, for example, as part of a GUI. The 
simulated properties can assist the well planner with antici- 

pating potential problems in performing hydrocarbon-ex- 
traction operations in the target area, so that the problems 

can be avoided or mitigated. 

These illustrative examples are given to introduce the 
reader to the general subject matter discussed here and are 

not intended to limit the scope of the disclosed concepts. The 
following sections describe various additional features and 

examples with reference to the drawings in which like 
numerals indicate like elements, and directional descriptions 

are used to describe the illustrative aspects but, like the 

illustrative aspects, should not be used to limit the present 
disclosure. 

FIG. 1 is an example of an environment 100 that includes 
a system for facilitating hydrocarbon exploration and extrac- 

tion according to some aspects of the present disclosure. The 
environment 100 includes a subterranean formation 102 

formed from various earth strata 104a-h. The subterranean 

formation 102 includes various geological bodies, such as a 
salt body 108 containing salt, an oil body 110 containing oil, 

a gas body 112 containing gas, and a water body 114
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containing water. Other examples may include more, fewer, 

or different types of earth strata and geological bodies. 

At least a portion of the system can be positioned at the 

surface 120 of the subterranean formation 102 for detecting 

geological bodies in the subterranean formation 102. For 

example, the system can include a signal source 116 and 

sensors 118a-d. Examples of the signal source 116 can 

include a vibration unit or an explosive charge, and 

examples of the sensors 118a-d can include geophones or 

hydrophones. The signal source 116 can emit one or more 

waves into a target area of the subterranean formation 102. 

In the example shown in FIG. 1, the waves are represented 

by black arrows and the target area is the portion of the 

subterranean formation 102 positioned below sensors 118a- 

d. The waves can reflect off the geological bodies and return 

to the sensors 118a-d, which can detect the reflected waves 

and provide corresponding sensor data to a computing 

device 122, which may also form part of the system. 

As one particular example, the signal source 116 can 

include a vibration unit and the sensors 118a-d can include 

geophones. The vibration unit can emit vibrations that 
propagate through the target area of the subterranean for- 

mation 102, reflect off the geological bodies, and return to 

the geophones. The geophones can receive the reflected 
vibrations and generate seismic data based on the reflected 

vibrations. An example of the seismic data can be a seismic 
trace. The geophones can then transmit their respective 

seismic data to the computing device 122. 
The computing device 122 includes a trained machine- 

learning model 124 that can receive seismic data as input 

and provide an output indicating which types of geological 
bodies are present in the target area of the subterranean 

formation 102. For example, the computing device 122 can 
execute the trained machine-learning model 124 based on 

the seismic data to generate an output indicating whether or 

not the target area includes a salt body 108, an oil body 110, 
a gas body 112, a water body 114, a volcanic intrusion, a 

certain type of rock layer, or any combination of these. This 
can provide useful information to a well operator as to 

whether the target area is suitable for hydrocarbon extrac- 
tion. For example, the presence of the salt body 108 may 

make the target area unstable and therefore poorly suited to 

drilling operations. Notifying the well operator of this infor- 
mation before he initiates drilling, completion, or extraction 

operations can minimize the likelihood of costly and dan- 
gerous events, such as casing fracturing and wellbore col- 

lapse. 
While FIG. 1 depicts an exemplary system that includes 

certain components (e.g., the signal source 116, sensors 

118a-d, and computing device 122), this is intended to be 
illustrative and non-limiting. Other examples may include 

more, fewer, or different components. For instance, another 
example may involve the computing device 122 receiving 

seismic data from a remote computing device via a network, 
such as the Internet. The computing device 122 can receive 

the seismic data from the remote computing device addi- 

tionally or alternatively to receiving seismic data from the 
sensors 118a-d. And in some examples, the computing 

device 122 may be positioned offsite, rather than proxi- 
mately to the target area of the subterranean formation 102. 

FIG. 2 is a block diagram of an example of the computing 
device 122 according to some aspects of the present disclo- 

sure. While FIG. 2 depicts the computing device 122 as 

including certain components, other examples may involve 
more, fewer, or different components than are shown in FIG. 

2. 
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4 
As shown, the computing device 122 includes a processor 

202 communicatively coupled to a memory 204 by a bus 

206. The processor 202 can include one processor or mul- 

tiple processors. Non-limiting examples of the processor 
202 include a Field-Programmable Gate Array (FPGA), an 

application-specific integrated circuit (ASIC), a micropro- 
cessor, or any combination of these. The processor 202 can 

execute instructions 208 stored in the memory 204 to 
perform operations. In some examples, the instructions 208 

can include processor-specific instructions generated by a 

compiler or an interpreter from code written in any suitable 
computer-programming language, such as C, C++, C #, or 

Java. 
The memory 204 can include one memory device or 

multiple memory devices. The memory 204 can be non- 
volatile and may include any type of memory device that 

retains stored information when powered off. Non-limiting 

examples of the memory 204 include electrically erasable 
and programmable read-only memory (EEPROM), flash 

memory, or any other type of non-volatile memory. At least 
some of the memory device includes a non-transitory com- 

puter-readable medium from which the processor 202 can 
read instructions 208. A non-transitory computer-readable 

medium can include electronic, optical, magnetic, or other 

storage devices capable of providing the processor 202 with 
the instructions 208 or other program code. Non-limiting 

examples of a non-transitory computer-readable medium 
include magnetic disk(s), memory chip(s), ROM, random- 

access memory (RAM), an ASIC, a configured processor, 
optical storage, or any other medium from which a computer 

processor can read the instructions 208. 

Additionally, the computing device 122 can include train- 
ing data 212 for training a machine-learning model 210. The 

training data 212 can include multiple input-output pairs. 
Each input-output pair includes, as input, a seismic dataset 

characterizing a subterranean formation area. A subterranean 

formation area is a designated area of a subterranean for- 
mation. Each input-output pair also includes, as output, one 

or more output labels specifying one or more types of 
geological bodies present in that subterranean formation 

area. For example, an input-output pair can include an input 
seismic trace corresponding to a subterranean formation area 

and one or more output labels indicating that the subterra- 

nean formation area includes a salt body and a gas body. The 
output labels may have been manually assigned to the input 

seismic dataset by a geologist or other expert. The training 
data 212 can include any number and combination of 

input-output pairs corresponding to any number and com- 
bination of subterranean formation areas, though more 

input-output pairs may produce better training results. 

In some examples, the machine-learning model 210 can 
include a neural network, a support vector machine, a 

Bayesian classifier, or any combination of these. The 
machine-learning model 210 may be in an untrained state. 

The machine-learning model 210 can be trained using the 
training data 212 to generate a trained machine-learning 

model 124. 

Once trained, the machine-learning model 124 can be 
configured to receive seismic data 220 corresponding to a 

target area of a subterranean formation as input and respon- 
sively generate an output 216 indicating one or more types 

of geological bodies that are present in the target area. A 
target area of a subterranean formation is a designated area 

of subterranean formation to be analyzed, for example, to 

determine whether the area contains one or more types of 
geological bodies. The seismic data 220 can be different than 

the training data 212, such that the seismic data 220 was not
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used to train the machine-learning model 210. In this way, 
the seismic data 220 can be “unknown” to the trained 

machine-learning model 124. 

The seismic data 220 is multidimensional data, such as 
two-dimensional (2D) data or three-dimensional (3D) data. 

For example, the seismic data 220 can include data points 
having multiple dimensions, such as amplitude, depth, and 

time. The data points can have the raw data values as 
originally provided by the sensors, or the data points can 

have derived values generated by pre-processing the raw 

data values. An example of the seismic data 220 is depicted 
in FIG. 5. In FIG. 5, the X-axis represents crossline number 

(e.g., in kilometers) and the Y-axis represents depth. A 
crossline is a seismic line within a 3D survey that is 

perpendicular to the direction in which the data was 
acquired. 

In some examples, the computing device 122 can also 

determine one or more seismic-attribute datasets 214 based 
on the seismic data 220. A seismic-attribute dataset is a 

multidimensional dataset including values for a particular 
type of seismic attribute, such as a relative acoustic imped- 

ance, apparent polarity, reflection strength, root mean 
squared (RMS) frequency, or an are length. The computing 

device 122 can determine the seismic-attribute datasets 214 

prior to providing the seismic data 220 as input to the trained 
machine-learning model 124, and then provide the seismic- 

attribute datasets 214 as input to the trained machine- 
learning model 124 in addition to the seismic data 220. The 

seismic-attribute datasets 214 can assist the trained machine- 
learning model 124 in determining which types of geologi- 

cal bodies are present in the target area of the subterranean 

formation. For example, the seismic-attribute datasets 214 
can serve as additional contextual information that can 

improve the accuracy of the output 216 from the trained 
machine-learning model 124. 

The computing device 122 can also include an action 

module 218. The action module 218 can include executable 
program code for taking one or more actions based on the 

output 216 of the trained machine-learning model 124. For 
example, the computing device 122 can execute the action 

module 218 to determine whether the target area of the 
subterranean formation is suitable for drilling a wellbore 

based on the output 216 from the trained machine-learning 

model 124. The computing device 122 can then generate a 
graphical user interface (GUI) indicating whether the target 

area is suitable for drilling and display the GUI on a display 
device 222, such as a liquid crystal display or light emitting 

diode display. 
As one particular example, the computing device 122 use 

the trained machine-learning model 124 to generate an 

output 216 indicating that a target area of the subterranean 
formation associated with the seismic data 220 includes a 

particular type of geological body, such as a water body or 
salt body. The computing device 122 can then execute the 

action module 218 to apply a set of rules based on the output 
216 to determine whether the target area is suitable for 

drilling. The rules may indicate that a presence of the 

particular type of geological body renders the target area 
unsuitable for drilling. So, the computing device 122 can 

generate and display a GUI that includes an alert indicating 
that the target area is unsuitable for drilling. As an alternative 

example, the computing device 122 use the trained machine- 
learning model 124 to generate an output 216 indicating that 

a target area of the subterranean formation associated with 

the seismic data 220 includes a first type of geological body, 
such as a gas body, and lacks a second type of geological 

body, such as a water body or salt body. The computing 
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6 
device 122 can then execute the action module 218 to apply 
the set of rules based on the output 216 to determine whether 

the target area is suitable for drilling. The rules may indicate 

that a presence of the first body and the absence of the 
second body renders the target area of the subterranean 

formation suitable for drilling. So, the computing device 122 
can generate and display a GUI that includes a notification 

indicating that the target area is suitable for drilling. 
As another example, the computing device 122 use the 

trained machine-learning model 124 to determine that a 

target area of the subterranean formation associated with the 
seismic data 220 includes particular type of geological body, 

such as a water body or salt body. The computing device 122 
can then execute the action module 218 to convey the 

seismic data 220, the output 216, or both of these to a well 
simulator tool 224, such as DecisionSpace® 365 by Halli- 

burton Company. The well simulator tool 224 can receive 

the seismic data 220 and the output 216 and responsively 
generate a three-dimensional (3D) simulation of the target 

area of the subterranean formation. The output 216 can 
provide context to the simulation that improves the accuracy 

of the 3D simulation. For example, the well simulator tool 
224 may be unable to unilaterally determine whether the 

target area of the subterranean formation includes certain 

types of geological bodies, but that information may be 
useful for generating an accurate simulation. Thus, by pro- 

viding the output 216 to the well simulator tool 224, the well 
simulator tool 224 can produce more accurate simulation 

results. After generating the 3D simulation, the well simu- 
lator tool 224 can execute the 3D simulation to determine 

simulated properties of the target area of the subterranean 

formation. The well simulator tool 224 can then provide the 
simulated properties to a well planner, who can use the 

simulated properties in one or more hydrocarbon exploration 
or extraction processes. 

In some examples, the computing device 122 can imple- 

ment the process shown in FIG. 3 for effectuating some 
aspects of the present disclosure. Other examples can 

involve more operations, fewer operations, different opera- 
tions, or a different order of the operations shown in FIG. 3. 

The operations of FIG. 3 are described below with reference 
to the components shown in FIG. 2. 

In block 302, a processor 202 receives training data 212. 

The training data 212 can include a plurality of seismic 
datasets and their corresponding output labels. For example, 

the training data 212 can include a plurality of seismic 
datasets and corresponding indicators of which of type(s) of 

geological bodies are present in each seismic dataset among 
the plurality of seismic datasets. 

In block 304, the processor 202 trains a machine-learning 

model 210 using the training data 212 to generate a trained 
machine-learning model 124. The processor 202 can train 

the machine-learning model 210 using a supervised training 
approach, through which the machine-learning model 210 

can learn patterns within the training data 212 (e.g., patterns 
between the input seismic datasets and the output labels). 

The processor 202 can train the machine-learning model 210 

by iteratively tuning weights internal to the machine-learn- 
ing model 210 based on the training data 212. 

One example of a machine-learning model 400 (e.g., the 
trained machine-learning model 124) suitable for imple- 

menting some aspects of the present disclosure is shown in 
FIG. 4. The machine-learning model 400 can include a 

plurality of encoding layer groups 402a-n that collectively 

form an encoding portion 404 of the machine-learning 
model 400. Each of the encoding layer groups 402a-n can 

include the layers shown in FIG. 4, as arranged in the order
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shown in FIG. 4. Though, other combinations and arrange- 
ments of layers are possible and contemplated within the 

scope of this disclosure. The output from each layer feeds 

into the next layer. In other words, the output of each layer 
serves as an input for the next layer. 

As shown in FIG. 4, the encoding layer groups 402a-n can 
include two-dimensional convolutional layers (Conv2D). A 

Conv2D layer performs two-dimensional convolution on its 
input to extract patterns or features from the input. The 

encoding layer groups 402a-n may also include batch nor- 

malization (BN) layers. A BN layer normalizes its input in 
batches. BN layers can improve the speed, performance, and 

stability of the machine-learning model 400. The encoding 
layer groups 402a-n may also include rectified linear unit 

(ReLU) layers. A ReLU layer is an activation layer that 
applies a rectifier to its input. ReLU layers can be trained 

faster using backpropagation than other types of activation 

layers. 
In some examples, the encoding layer groups 402a-n can 

also include addition layers (Addition). An Addition layer 
sums together a first coefficient of a Conv2D layer with a 

second coefficient of multiple layers 412 in an encoding 
layer group 402a. These coefficients can be tuned during the 

training process for the machine-learning model 400. In the 

example shown in FIG. 4, the multiple layers of the encod- 
ing layer group 402a include a BN layer, a ReLU layer, a 

Conv2D layer, and another ReLU layer. But other examples 
can involve more, fewer, or different layers. The Addition 

layer can assist with avoiding a vanishing gradient problem 
in which the gradient of the machine-learning model 400 

diminishes to approximately zero (vanishing). Such a van- 

ishing gradient can prevent the machine-learning model 400 
from further learning and reduce the accuracy of the 

machine-learning model 400. Thus, avoiding the vanishing 
gradient can improve the accuracy of the machine-learning 

model 400. 

The encoding layer groups 402a-7 may also include max 
pooling layers (Max pooling). A max pooling layer can 

downsample its input to reduce the size of the input. For 
example, a max pooling layer can reduce a 100x100 matrix 

of values to a 50x50 matrix of values. This downsampling 
can reduce the total number of computations performed by 

the machine-learning model 400 and increase efficiency. 

A plurality of decoding layer groups 406a-n can also be 
included in the machine-learning model 400. The plurality 

of decoding layer groups 406a-n can collectively form a 
decoding portion 408 of the machine-learning model 400. 

Each of the decoding layer groups 406a-n can include the 
layers shown in FIG. 4, as arranged in the order shown in 

FIG. 4. Though, other combinations and arrangements of 

layers are possible and contemplated within the scope of this 
disclosure. The output from each layer feeds into the next 

layer. In other words, the output of each layer serves as an 
input for the next layer. 

The decoding layer groups 406a-n can include Conv2D 
layers, BN layers, ReLU layers, Addition layers, upsampling 

layers (Upsampling), concatenation layers (Concatenate), or 

any combination of these. The Conv2D layers, BN layers, 
ReLU layers, and Addition layers can function similarly to 

those described above. An upsampling layer can generally 
perform the opposite functionality to the maxpooling layers 

and increase the size of an input. For example, the upsam- 
pling layer can upsample its input from a 50x50 matrix of 

values to a 100x100 matrix of values. A concatenation layer 

can perform an assembly process that ensures that the output 
size of a related upsampling layer matches the output size of 

a maxpooling layer corresponding to the upsampling layer. 
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For example, the concatenation layer in decoding layer 
group 4065 can ensure that the output size (50x50) of the 

upsampling layer in that decoding layer group 4064 matches 

the maxpooling output size from the encoding layer group 
402a. And the concatenation layer in decoding layer group 

4067 can ensure that the output size (25x25) of the upsam- 
pling layer in that decoding layer group 4067 matches the 

maxpooling output size from the encoding layer 4025. And 
so on. 

A bridge portion 410 can connect the encoding portion 

404 to the decoding portion 408. In the example shown in 
FIG. 4, the bridge portion 410 includes BN layers, ReLU 

layers, Conv2D layers, and an addition layer. But other 
examples may involve more layers, fewer layers, different 

layers, or a different arrangement of layers than is shown. 
In some examples, the machine-learning model 400 can 

further include (e.g., terminate with) a sigmoid layer 414. 

The sigmoid layer 414 can provide a numerical value 
between zero and one indicating a likelihood that a target 

area of a subterranean formation associated with the input 
seismic data 220 has a particular type of geological body. 

For example, the sigmoid layer 414 can output a numerical 
value of 0.78 if the machine-learning model determines that 

there is a 78% probability that the target area has a salt body. 

As another example, the sigmoid layer 414 can output a 
numerical value of 0.32 if the machine-learning model 

determines that there is a 32% probability that the target area 
has a salt body. 

The machine-learning model 400 can additionally or 
alternatively include a dense layer 416. The dense layer 416 

can provide one or more identifiers (e.g., labels or integer 

values) indicating one or more types of geological bodies 
that are present in the target area of the subterranean 

formation. For example, the dense layer can output 1 for a 
salt body, 2 for a water body, 3 for a gas body, 4 for an oil 

body, or any combination of these. But other numerical 

schemes are possible. 
To assist with understanding the machine-learning model 

400, FIG. 4 depicts information in the format (N, X, Y, A) 
next to each of the encoding layer groups 402a-n and 

decoding layer groups 406a-n. N is the number of samples 
in the input seismic data 220, where N is in a matrix format; 

X is the number of rows in the matrix; Y is the number of 

columns in the matrix; and A is the number of channels 
associated with that layer group. For example, A can be the 

number of seismic attributes (e.g., apparent polarity, arc 
length, and relative amplitude change) derived from the 

input seismic data 220 that can be analyzed by the layer 
group. The machine-learning model 400 can accept any 

number and combination of channels. FIG. 4 also depicts 

information in the format (N, X, Y, L) next to the sigmoid 
layer 414 and the dense layer 416. N, X, and Y are the same 

as above, while L is the number of outputs produced by the 
layer. Since the sigmoid layer 414 produces a single output 

value, the sigmoid layer 414 has an L value of 1. And since 
the dense layer 416 can provide L output labels, the dense 

layer 416 has a value of L. 

The machine-learning model architecture shown in FIG. 
4 is exemplary and intended to be non-limiting. In other 

examples, the machine-learning model 400 may have more 
layers, fewer layers, different layers, or a different arrange- 

ment of layers than is shown in FIG. 4. For instance, other 
examples may lack the BN layers, Addition layers, concat- 

enate layers, or any combination of these. The values for N, 

X, Y, A, and L are also exemplary and intended to be 
non-limiting. Other examples may have different values for 

N, X, Y, A, and L than is shown in FIG. 4.
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Returning to FIG. 3, after the machine-learning model 

124 is trained, the process can continue to block 306. At 

block 306, the processor 202 receives seismic data 220 

associated with a target area of a subterranean formation. 
The seismic data 220 can be generated using one or more 

sensors, such as one or more geophones or hydrophones, 
positioned proximate to the target area of the subterranean 

formation. 
The seismic data 220 can be provided in any suitable 

format, such as a SEG-Y file format. The SEG-Y format is 

a standard format developed by the Society of Exploration 
Geophysicists (SEG) for storing geophysical data. The 

trained machine-learning model 124 can be configured to 
accept and process data in a particular file format, such as 

SEG-Y, to produce an output 216. 
In block 308, the processor 202 generates one or more 

seismic-attribute datasets 214 based on the seismic data 220, 

where the one or more seismic-attribute datasets 214 corre- 
spond to one or more types of seismic attributes. The 

processor 202 can apply one or more algorithms to the 
seismic data 220 to generate the seismic-attribute datasets 

214. 
One exemplary type of seismic attribute is apparent 

polarity. Apparent polarity can be the polarity of seismic 

data scaled by the reflection strength, which roughly 
approximates scaled reflection coefficients. Apparent polar- 

ity can be a wavelet-response attribute, like response phase 
and response frequency. In an interval of seismic data 220 

that is bound by consecutive envelope troughs (e.g., reflec- 
tion strength minima), the apparent polarity can be the sign 

of the seismic data 220 measured at the envelope peak 

multiplied by the value of the envelope peak, and held 
constant in the interval. 

Another exemplary type of seismic attribute is arc length. 
Arc length can be the length of the seismic waveform in a 

window measured along its curves divided by the length of 

the window. Arc length increases with both amplitude and 
frequency. Thus, a higher are length may indicate strongly 

reflecting and moderately spaced bedding, or moderately 
reflecting and thinly spaced bedding. However, are length 

tends to be driven more by amplitude than by frequency, so 
that it resembles RMS amplitude and other amplitude attri- 

butes. 

Yet another exemplary type of seismic attribute is relative 
amplitude change. Relative amplitude change can be a 

directional attribute and appears illuminated along the time 
axis when displayed in monochrome. Relative amplitude 

change may reveal structural detail hidden in the amplitudes 
and highlights zones of reflection interference, which occur 

at amplitude minima between reflections. Relative ampli- 

tude change may blend particularly well with response phase 
and response frequency, because these attributes have a 

blocky output that changes values at amplitude minima. 
Some examples of seismic-attribute datasets 604a-c are 

shown in FIG. 6. In FIG. 6, the X-axes represent crossline 
number and the Y-axes represent depth. Seismic-attribute 

dataset 604a can indicate apparent polarities associated with 

the target area of the subterranean formation, seismic- 
attribute dataset 6046 can indicate arc lengths associated 

with the target area, and seismic-attribute dataset 604c can 
indicate relative amplitude changes associated with the 

target area. But more or different seismic-attribute datasets 
corresponding to more or different types of seismic attri- 

butes can be generated. 

Each data point in a seismic-attribute dataset can be 
generated by applying an algorithm to the value(s) of a 

related data point in the seismic data 220, such that each data 
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point in the seismic-attribute dataset is related to a corre- 
sponding data point in the seismic data 220. This can result 

in the seismic-attribute datasets having the same dimensions 

as the input seismic data 220, in some examples. But in other 
examples, the seismic-attribute datasets can have different 

dimensions than the input seismic data 220. 
In block 310, the processor 202 provides the seismic data 

220, the one or more seismic-attribute datasets 214, or both 
of these as input to the trained machine-learning model 124. 

In block 312, the processor 202 receives an output 216 

from the trained machine-learning model 124. The output 
216 can indicate whether the target area of the subterranean 

formation includes one or more types of geological bodies. 
For example, the output 216 can be a single numerical value 

from the sigmoid layer 414 of the machine-learning model 
400 of FIG. 4, where the single numerical value indicates a 

probability of the target area including a target type of 

geological body. Additionally or alternatively, the output 
216 can be one or more identifiers (e.g., integer values) from 

the dense layer 416 of the machine-learning model 400 of 
FIG. 4, where the identifiers indicate one or more types of 

geological bodies are present in the target area of the 
subterranean formation. 

In block 314, the processor 202 executes one or more 

processing operations using the seismic data 220 based on 
the output 216 from the trained machine-learning model 

124. In some examples, the processor 202 can execute the 
action module 218 to implement the one or more processing 

operations. For example, the action module 218 may include 
program code that is executable by the processor 202 for 

causing the processor 20 to implement the one or more 

processing operations. 
In some examples, the one or more processing operations 

can involve smoothing an outer boundary of a target type of 
geological body in the seismic data 220. The processor 202 

can smooth the outer boundary by applying a smoothing 

filter, such as a median filter, to the seismic data 220. One 
example of such smoothing is depicted in boxes 702a-b of 

FIG. 7. Box 702a depicts an outer boundary of a salt body 
prior to smoothing. Box 702 depicts the outer boundary of 

the salt body subsequent to smoothing. Smoothing the outer 
boundary can make the seismic data 220 easier to read and 

more conducive to further processing. 

Additionally or alternatively, the one or more processing 
operations can involve identifying a boundary of a target 

type of geological body in the seismic data 220. In one such 
example, the processor 202 can determine that the target 

type of geological body (e.g., a salt body) is present in the 
target area of the subterranean formation based on the output 

216 from the trained machine-learning model. The processor 

202 can then execute one or more image-analysis algorithms 
on the seismic data 220 to determine an outer boundary of 

the target type of geological body. Examples of the image- 
analysis algorithms can include a smoothing algorithm, an 

edge-detection algorithm, a segmentation algorithm, or any 
combination of these. The processor 202 may then highlight 

the outer boundary to assist a user in visualizing the outer 

boundary. For instance, the processor 202 can generate a 
GUI that highlights the outer boundary within the seismic 

data 220. The processor 202 can then display the GUI on a 
display device 222. 

Two approaches for highlighting the outer boundary of 
the target geological body are shown in FIG. 7, though other 

approaches are possible. One approach involves overlaying 

an outline of the outer boundary of the target geological 
body on the seismic data 220. This approach is represented 

in boxes 704a-b. Box 704a depicts an outer boundary of a
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salt body identified in the seismic data 220 by the processor 

202. Box 7046 depicts an outline of the salt body overlaid 

on the seismic data 220 by the processor 202, to highlight the 

outer boundary for the user. Another approach involves 

removing content external to the outer boundary of the target 

geological body from the seismic data 220. This approach is 

represented in boxes 706a-b. Box 706a depicts the seismic 
data 220, which includes a salt body in this example. Box 

706d depicts the seismic data 220, where content external to 
the outer boundary of the salt body has been removed from 

the seismic data 220 by the processor 202. Removing such 

extraneous content can focus the user’s attention on the 
target geological body (e.g., the salt body in FIG. 7). 

In some examples, the one or more processing operations 
can additionally or alternatively include the actions 

described above with regard to FIG. 2. For example, the 
processor 202 can determine whether a target area of the 

subterranean formation is suitable for drilling a wellbore 

based on the output 216 from the trained machine-learning 
model 124. The computing device 122 can then generate a 

GUI indicating whether the target area is suitable for drilling 
and display the GUI on the display device 222. As another 

example, the processor 202 can generate a 3D simulation 

based on the seismic data 220 and the output 216 from the 
trained machine-learning model 124, execute the 3D simu- 

lation to determine simulated properties of the target area of 
the subterranean formation, and provide the simulated prop- 

erties to a user (e.g., a well planner). 
Hydrocarbon exploration and extraction can be facilitated 

according to one or more of the following examples. 

EXAMPLE #1 

Asystem of the present disclosure can include a processor 

and a memory including instructions that are executable by 
the processor. The instructions can be executable for causing 

the processor to receive seismic data indicating locations of 
a plurality of geological bodies in a target area of a subter- 

ranean formation. The instructions can be executable for 

causing the processor to provide the seismic data as input to 
a trained machine-learning model for determining whether 

the target area of the subterranean formation includes one or 
more types of geological bodies. The instructions can be 

executable for causing the processor to, in response to 
providing the seismic data as input to the trained machine- 

learning model, receive an output from the trained machine- 

learning model indicating that the target area of the subter- 
ranean formation includes the one or more types of 

geological bodies. The instructions can be executable for 
causing the processor to execute one or more processing 
operations for facilitating hydrocarbon exploration or 
extraction based on the seismic data and the output from the 

trained machine-learning model. 

EXAMPLE #2 

The system of Example #1 may feature the one or more 

types of geological bodies including a salt body, a water 
body, or a hydrocarbon body. 

EXAMPLE #3 

The system of any of Examples #1-2 may feature the one 

or more processing operations including: determining that a 

target type of geological body is present in the target area of 
the subterranean formation based on the output from the 

trained machine-learning model; executing an edge-detec- 
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tion algorithm on the seismic data to determine an outer 

boundary of the target type of geological body that is present 

in the target area; generating a graphical user interface that 

highlights the outer boundary relative to the seismic data; 

and displaying the graphical user interface on a display 

device. 

EXAMPLE #4 

The system of Example #3 may feature the graphical user 

interface including an outline of the outer boundary overtop 

of the seismic data to highlight the outer boundary; or the 

graphical user interface excluding seismic content external 

to the outer boundary from the seismic data to highlight the 

outer boundary. 

EXAMPLE #5 

The system of any of Examples #1-4 may feature the one 
or more processing operations including smoothing the 

seismic data by applying a median filter to the seismic data. 

EXAMPLE #6 

The system of any of Examples #1-5 may feature the 

memory further including instructions that are executable by 
the processor for causing the processor to generate a seis- 

mic-attribute dataset based on the seismic data. The seismic- 
attribute dataset can include a plurality of data point values 

for a particular type of seismic attribute. Each data point 

value in the plurality of data point values can be generated 
by applying one or more algorithms to a corresponding data 

point in the seismic data. The instructions may also be 
executable by the processor for causing the processor to 

provide the seismic-attribute dataset as input to the trained 
machine-learning model in addition to the seismic data. The 

seismic-attribute dataset can be used by the trained machine- 

learning model in conjunction with the seismic data for 
determining whether the target area of the subterranean 

formation includes the one or more types of geological 
bodies. 

EXAMPLE #7 

The system of Example #6 may feature the particular type 

of seismic attribute being a relative acoustic impedance, an 

apparent polarity, a reflection strength, a root mean squared 
frequency, or an are length. 

EXAMPLE #8 

The system of any of Examples #1-7 may feature the 

memory further including instructions that are executable by 
the processor for causing the processor to, prior to receiving 

the seismic data: receive training data that includes a plu- 

rality of seismic datasets, where the training data can indi- 
cate which of the one or more types of geological bodies are 

present in each seismic dataset among the plurality of 
seismic datasets, and where the training data can exclude the 

seismic data; and train a machine-learning model using the 
training data to generate the trained machine-learning 

model. 

EXAMPLE #9 

The system of any of Examples #1-8 may feature the one 

or more processing operations including determining that
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the target area of the subterranean formation is suitable or 

unsuitable for drilling a wellbore by applying the output 

from the trained machine-learning model to a predefined set 

of rules; generating a graphical user interface indicating that 

the target area is suitable or unsuitable for drilling the 

wellbore, respectively; and displaying the graphical user 

interface on a display device. 

EXAMPLE #10 

The system of any of Examples #1-9 may feature the one 

or more processing operations including generating a three- 

dimensional simulation of the target area of the subterranean 

formation based on the seismic data and the output from the 

trained machine-learning model; executing the three-dimen- 

sional simulation to determine simulated properties of the 

target area of the subterranean formation; and providing the 

simulated properties to a well planner for use in a hydro- 

carbon exploration or extraction process. 

EXAMPLE #11 

A method of the present disclosure can include receiving 

seismic data indicating locations of a plurality of geological 

bodies in a target area of a subterranean formation; provid- 

ing the seismic data as input to a trained machine-learning 

model for determining whether the target area of the sub- 

terranean formation includes one or more types of geologi- 

cal bodies; in response to providing the seismic data as input 

to the trained machine-learning model, receiving an output 

from the trained machine-learning model indicating that the 

target area of the subterranean formation includes the one or 

more types of geological bodies; and executing one or more 

processing operations for facilitating hydrocarbon explora- 
tion or extraction based on the seismic data and the output 

from the trained machine-learning model. Some or all of the 

method steps can be implemented by a processor. 

EXAMPLE #12 

The method of Example #11 may involve the one or more 
types of geological bodies including a salt body, a water 

body, or a hydrocarbon body. 

EXAMPLE #13 

The method of any of Examples #11-12 may involve the 

one or more processing operations including: determining 
that a target type of geological body is present in the target 

area of the subterranean formation based on the output from 
the trained machine-learning model; executing an edge- 

detection algorithm on the seismic data to determine an 
outer boundary of the target type of geological body that is 

present in the target area of the subterranean formation; 

generating a graphical user interface that highlights the outer 
boundary relative to the seismic data; and displaying the 

graphical user interface on a display device. 

EXAMPLE #14 

The method of Example #13 may involve the graphical 
user interface including an outline of the outer boundary 

overtop of the seismic data to highlight the outer boundary; 

or the graphical user interface excluding seismic content 
external to the outer boundary from the seismic data to 

highlight the outer boundary. 
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EXAMPLE #15 

The method of any of Examples #11-14 may involve the 

one or more processing operations including smoothing the 

seismic data by applying a median filter to the seismic data. 

EXAMPLE #16 

The method of any of Examples #11-15 may involve 

generating a seismic-attribute dataset based on the seismic 

data. The seismic-attribute dataset can include a plurality of 

data point values for a particular type of seismic attribute. 
Each data point value in the plurality of data point values can 

be generated by applying one or more algorithms to a 
corresponding data point in the seismic data. The method 

may also involve providing the seismic-attribute dataset as 

input to the trained machine-learning model in addition to 
the seismic data. The seismic-attribute dataset can be used 

by the trained machine-learning model in conjunction with 
the seismic data for determining whether the target area of 

the subterranean formation includes the one or more types of 

geological bodies. 

EXAMPLE #17 

The method of Example #16 may involve the particular 
type of seismic attribute being a relative acoustic impedance, 

an apparent polarity, a reflection strength, a root mean 
squared frequency, or an are length. 

EXAMPLE #18 

The method of any of Examples #11-17 may involve, 
prior to receiving the seismic data: receiving training data 

that includes a plurality of seismic datasets, where the 
training data can indicate which of the one or more types of 

geological bodies are present in each seismic dataset among 
the plurality of seismic datasets, and where the training data 

can exclude the seismic data; and training a machine- 

learning model using the training data to generate the trained 
machine-learning model. 

EXAMPLE #19 

The method of any of Examples #11-18 may involve the 

one or more processing operations including: determining 
that the target area of the subterranean formation is suitable 

or unsuitable for drilling a wellbore by applying the output 

from the trained machine-learning model to a predefined set 
of rules; generating a graphical user interface indicating that 

the target area is suitable or unsuitable for drilling the 
wellbore, respectively; and displaying the graphical user 

interface on a display device. 

EXAMPLE #20 

A non-transitory computer-readable medium of the pres- 

ent disclosure can include program code that is executable 
by a processor for causing the processor to: receive seismic 

data indicating locations of a plurality of geological bodies 
in a target area of a subterranean formation; provide the 

seismic data as input to a trained machine-learning model 
for determining whether the target area of the subterranean 

formation includes one or more types of geological bodies; 

in response to providing the seismic data as input to the 
trained machine-learning model, receive an output from the 

trained machine-learning model indicating that the target
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area of the subterranean formation includes the one or more 

types of geological bodies; and execute one or more pro- 

cessing operations for facilitating hydrocarbon exploration 

or extraction based on the seismic data and the output from 

the trained machine-learning model. 

The foregoing description of certain examples, including 

illustrated examples, has been presented only for the pur- 

pose of illustration and description and is not intended to be 

exhaustive or to limit the disclosure to the precise forms 

disclosed. Numerous modifications, adaptations, and uses 

thereof will be apparent to those skilled in the art without 

departing from the scope of the disclosure. For instance, 

examples described herein can be combined together to 

yield still further examples. 

The invention claimed is: 

1. A system comprising: 

a seismic source configured to generate seismic waves; 

a seismic sensor configurable to detect the seismic waves 
output from the seismic source and generate seismic 

data based on the seismic waves; 
a processor; and 

a memory including instructions that are executable by 

the processor for causing the processor to: 
receive the seismic data generated by the seismic 

sensor, the seismic data indicating locations of a 
plurality of geological bodies in a target area of a 

subterranean formation, wherein the target area of 
the subterranean formation excludes a wellbore and 

the seismic data is usable for assessing whether the 

target area of the subterranean formation is suitable 
for drilling the wellbore; 

generate a seismic-attribute dataset based on the seis- 
mic data; 

provide the seismic data and the seismic-attribute data- 

set as input to a trained machine-learning model, the 
trained machine-learning model including a dense 

layer to provide one or more identifiers indicating 
one or more types of geological bodies that are 

present in the target area of the subterranean forma- 
tion, wherein a location of a target type of geological 

body in the subterranean formation affects whether 

the target area of the subterranean formation is 
suitable for drilling the wellbore, and wherein the 

target type of geological body includes a salt body or 
a hydrocarbon body; 

in response to providing the seismic data as input to the 
trained machine-learning model, receive an output 

from the trained machine-learning model indicating 

that the target area of the subterranean formation 
includes the target type of geological body; and 

execute one or more processing operations for facili- 
tating hydrocarbon exploration or extraction based 

on the output from the trained machine-learning 
model, wherein the one or more processing opera- 

tions include: 

determining that the target type of geological body is 
present in the target area of the subterranean 

formation based on the output from the trained 
machine-learning model; 

executing an edge-detection algorithm on the seis- 
mic data to determine an outer boundary of the 

target type of geological body that is present in the 

target area; 

generating a graphical user interface that highlights 

the outer boundary relative to the seismic data to 
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assist a well planner in determining the location of 
the target type of geological body in the target 

area; and 

displaying the graphical user interface on a display 
device for assisting the well planner in determin- 

ing whether the target area is suitable for drilling. 
2. The system of claim 1, wherein: 

the graphical user interface includes an outline of the 
outer boundary overtop of the seismic data to highlight 

the outer boundary; or 

the graphical user interface excludes seismic content 
external to the outer boundary from the seismic data to 

highlight the outer boundary. 
3. The system of claim 1, wherein the one or more 

processing operations include smoothing the seismic data by 
applying a median filter to the seismic data. 

4. The system of claim 1, wherein the seismic-attribute 

dataset includes a plurality of data point values for a 
particular type of seismic attribute, each data point value in 

the plurality of data point values being generated by apply- 
ing one or more algorithms to a corresponding data point in 

the seismic data. 
5. The system of claim 4, wherein the particular type of 

seismic attribute is a relative acoustic impedance, an appar- 

ent polarity, a reflection strength, a root mean squared 
frequency, or an are length. 

6. The system of claim 1, wherein the memory further 
includes instructions that are executable by the processor for 

causing the processor to, prior to receiving the seismic data: 
receive training data that includes a plurality of seismic 

datasets, wherein the training data indicates which 

target type of geological body is present in each seismic 
dataset among the plurality of seismic datasets, and 

wherein the training data excludes the seismic data; and 
train a machine-learning model using the training data to 

generate the trained machine-learning model. 

7. The system of claim 1, wherein the one or more 
processing operations include: 

determining that the target area of the subterranean for- 
mation is suitable or unsuitable for drilling the wellbore 

by applying the output from the trained machine- 
learning model to a predefined set of rules; 

generating the graphical user interface to indicate that the 

target area is suitable or unsuitable for drilling the 
wellbore, respectively; and 

displaying the graphical user interface on the display 
device. 

8. The system of claim 1, wherein the one or more 
processing operations include: 

generating a three-dimensional simulation of the target 

area of the subterranean formation based on the seismic 
data and the output from the trained machine-learning 

model; 
executing the three-dimensional simulation to determine 

simulated properties of the target area of the subterra- 
nean formation; and 

providing the simulated properties to the well planner for 

use in a hydrocarbon exploration or extraction process. 
9. A method comprising: 

receiving, by a processor, seismic data indicating loca- 
tions of a plurality of geological bodies in a target area 

of a subterranean formation, wherein the seismic data 
is generated by one or more seismic sensors configured 

to detect seismic waves associated with the subterra- 

nean formation that are outputted by a seismic source; 
generating, by the processor, a seismic-attribute dataset 

based on the seismic data;
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providing, by the processor, the seismic data and the 

seismic-attribute dataset as input to a trained machine- 

learning model, the trained machine-learning model 

including a dense layer to provide one or more identi- 

fiers indicating one or more types of geological bodies 

that are present in the target area of the subterranean 

formation, wherein a location of a target type of geo- 

logical body in the subterranean formation affects 

whether the target area of the subterranean formation is 

suitable for drilling a wellbore, and wherein the target 

type of geological body includes a salt body or a 

hydrocarbon body; 

in response to providing the seismic data as input to the 

trained machine-learning model, receiving, by the pro- 

cessor, an output from the trained machine-learning 

model indicating that the target area of the subterranean 

formation includes the target type of geological body; 

and 

executing, by the processor, one or more processing 

operations for facilitating hydrocarbon exploration or 

extraction based on the output from the trained 
machine-learning model, wherein the one or more 

processing operations include: 

determining that the target type of geological body is 
present in the target area of the subterranean forma- 

tion based on the output from the trained machine- 
learning model; 

executing an edge-detection algorithm on the seismic 
data to determine an outer boundary of the target 

type of geological body that is present in the target 

area of the subterranean formation; 
generating a graphical user interface that highlights the 

outer boundary relative to the seismic data to assist 
a well planner in determining a location of the target 

type of geological body in the target area; and 

displaying the graphical user interface on a display 
device for assisting the well planner in determining 

whether the target area is suitable for drilling. 
10. The method of claim 9, wherein: 

the graphical user interface includes an outline of the 
outer boundary overtop of the seismic data to highlight 

the outer boundary; or 

the graphical user interface excludes seismic content 
external to the outer boundary from the seismic data to 

highlight the outer boundary. 
11. The method of claim 9, wherein the one or more 

processing operations include smoothing the seismic data by 
applying a median filter to the seismic data. 

12. The method of claim 9, wherein the seismic-attribute 

dataset includes a plurality of data point values for a 
particular type of seismic attribute, each data point value in 

the plurality of data point values being generated by apply- 
ing one or more algorithms to a corresponding data point in 

the seismic data. 
13. The method of claim 12, wherein the particular type 

of seismic attribute is a relative acoustic impedance, an 

apparent polarity, a reflection strength, a root mean squared 
frequency, or an arc length. 

14. The method of claim 9, further comprising, prior to 
receiving the seismic data: 

receiving training data that includes a plurality of seismic 
datasets, wherein the training data indicates which of 

the target type of geological body is present in each 

seismic dataset among the plurality of seismic datasets, 
and wherein the training data excludes the seismic data; 

and 
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18 
training a machine-learning model using the training data 

to generate the trained machine-learning model. 

15. The method of claim 9, wherein the one or more 

processing operations include: 

determining that the target area of the subterranean for- 

mation is suitable or unsuitable for drilling a wellbore 

by applying the output from the trained machine- 

learning model to a predefined set of rules; and 

generating the display device. 

16. A non-transitory computer-readable medium compris- 

ing program code that is executable by a processor for 

causing, the processor to: 

receive seismic data indicating locations of a plurality of 

geological bodies in a target area of a subterranean 

formation, the seismic data being generated by one or 

more seismic sensors configured to detect seismic 

waves associated with the subterranean formation out- 

put by a seismic source; 

generate a seismic-attribute dataset based on the seismic 

data; 

provide the seismic data and the seismic-attribute dataset 

as input to a trained machine-learning model, the 

trained machine-learning model including a dense layer 

to provide one or more identifiers indicating one or 

more types of geological bodies that are present in the 

target area of the subterranean formation, wherein a 

location of a target type of geological body in the 

subterranean formation affects whether the target area 

of the subterranean formation is suitable for drilling a 

wellbore, and wherein the target type of geological 

body includes a salt body or a hydrocarbon body; 

in response to providing the seismic data as input to the 

trained machine-learning model, receive an output 

from the trained machine-learning model indicating 

that the target area of the subterranean formation 

includes the target type of geological body; and 

execute one or more processing operations for facilitating 

hydrocarbon exploration or extraction based on the 

seismic data and the output from the trained machine- 

learning model, wherein the one or more processing 

operations include: 

determining that the target type of geological body is 

present in the target area of the subterranean forma- 

tion based on the output from the trained machine- 

learning model; 

executing an edge-detection algorithm on the seismic 

data to determine an outer boundary of the target 

type of geological body that is present in the target 

area of the subterranean formation; 

generating a graphical user interface that highlights the 

outer boundary relative to the seismic data to assist 

a well planner in determining a location of the target 

type of geological body in the target area; and 

displaying the graphical user interface on a display 

device for assisting the well planner in determining 

whether the target area is suitable for drilling. 

17. The non-transitory computer-readable medium of 

claim 16, wherein: 

the graphical user interface includes an outline of the 

outer boundary overtop of the seismic data to highlight 

the outer boundary; or 

the graphical user interface excludes seismic content 
external to the outer boundary from the seismic data to 

highlight the outer boundary.
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18. The non-transitory computer-readable medium of 

claim 16, wherein the one or more processing operations 

include smoothing the seismic data by applying a median 

filter to the seismic data. 
19. The non-transitory computer-readable medium of 

claim 16, wherein the seismic-attribute dataset includes a 
plurality of data point values for a particular type of seismic 

attribute, each data point value in the plurality of data point 
values being generated by applying one or more algorithms 

to a corresponding data point in the seismic data. 

20. The non-transitory computer-readable medium of 
claim 19, wherein the particular type of seismic attribute is 

a relative acoustic impedance, an apparent polarity, a reflec- 
tion strength, a root mean squared frequency, or an are 

length. 
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