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FAULT SKELETONIZATION FOR FAULT 

IDENTIFICATION IN A SUBTERRANEAN 

ENVIRONMENT 

TECHNICAL FIELD 

The present disclosure relates generally to hydrocarbon 
exploration and, more particularly (although not necessarily 

exclusively), to identifying faults in a subterranean environ- 
ment. 

BACKGROUND 

Hydrocarbon exploration is the search for hydrocarbons, 
such as oil or gas, within a subterranean formation. Inter- 

pretation of faults in seismic data has a significant impact on 
hydrocarbon exploration, reservoir characterization, and 

field development workflows. The faults may represent 
drilling hazards, an indication of fluid migration of reser- 

voirs, and an indication of compartmentalization of reser- 

voirs. Thus, a comprehensive understanding of faulting in a 
reservoir may provide significant value for efficient devel- 

opment of hydrocarbon resources. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic of a subterranean environment with 
fractures according to one example of the present disclosure. 

FIG. 2 is a schematic of a computing device for fault 

skeletonization according to one example of the present 
disclosure. 

FIG. 3 is a flow chart of a process for fault skeletonization 
according to one example of the present disclosure. 

FIG. 4A is a graph of original seismic data for fault 

skeletonization according to one example of the present 
disclosure. 

FIG. 4B is a graph of binary distribution data for fault 
skeletonization according to one example of the present 

disclosure. 
FIG. 4C is a graph of combined seismic volume data after 

fault skeletonization according to one example of the present 

disclosure. 

DETAILED DESCRIPTION 

Certain aspects and examples of the present disclosure 
relate to facilitating hydrocarbon exploration by performing 

fault skeletonization to identify faults in a subterranean 
environment. Fault plane geometries and fault networks may 

represent drilling hazards. Further, the fault plane geom- 

etries may determine reservoir connectivity, gross volume, 
and performance. Interpreting faults rapidly and accurately 

may provide a significant advantage in facilitating hydro- 
carbon exploration and wellbore planning operations for the 

subterranean environment. 
Traditional deterministic approaches for imaging faults in 

seismic data generate fault-likelihood volumes by analyzing 

the discontinuity and semblance in the seismic data. These 
approaches tend to generate broad or blurred looking faults. 

A thinning algorithm can be applied to identify a maximum 
and generate cleaner or sharper looking faults. This thinning 

process requires additional information, such as structural 
dip and strike angle data, to assist the structure oriented 

filtering process. However, generating these dip and strike 

angles can take significant time and compute power during 
the deterministic estimation process. Recent deep learning 

approaches to fault prediction can generate fault likelihood 
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2 
volumes more efficiently but lack the ability to predict dip 
and strike angles. As a result, thinning fault likelihood data 

in a deep learning workflow becomes very difficult and the 

faults remain blurry. 
Fault skeletonization techniques of the present disclosure 

can thin fault likelihood volumes without dip and strike 
angle data. Fault likelihood data for a subterranean environ- 

ment can be received and a binary mask filter can be applied 
to the fault likelihood data to generate binary distribution 

data. The binary mask filter can convert the fault likelihood 

volumes to black pixels and white pixels, where black pixels 
represent faults and white pixels do not represent faults. The 

binary distribution data may be pixels arranged in profiles of 
at least two directions, such as an inline direction and a 

crossline direction. 
Fault skeletonization can be performed on each profile of 

the binary distribution data to thin the binary distribution 

data and form fault skeletonization data with connected 
pixels that represent part of a fracture. The fault skeleton- 

ization can include checking each pixel of the binary dis- 
tribution for certain conditions. Black pixels satisfying the 

conditions can be converted to white, meaning those pixels 
do not represent the skeleton of the fault. The fault skel- 

etonization can be repeated until no additional pixels are 

converted to white. In this manner, the fault skeletonization 
process can provide thinned fault identification without 

excessive time and compute power requirements. 
The fault skeletonization data can be converted to seismic 

volume data and the seismic volume data can be combined 
and filtered in the at least two directions. The seismic 

volume data with thinned faults can be output as an image 

for use in planning wellbore operations. For example, areas 
of the subterranean environment with many faults identified 

by the image may be avoided during wellbore drilling so as 
not to lose drilling fluid. 

While the present disclosure relates to identifying faults in 

a subterranean environment, the techniques described can be 
implemented for other operations, such as to thin predicted 

seismic surfaces or to improve the success rate of discov- 
ering subsurface reservoirs. 

Illustrative examples are given to introduce the reader to 
the general subject matter discussed herein and are not 

intended to limit the scope of the disclosed concepts. The 

following sections describe various additional features and 
examples with reference to the drawings in which like 

numerals indicate like elements, and directional descriptions 
are used to describe the illustrative aspects, but, like the 

illustrative aspects, should not be used to limit the present 
disclosure. 

FIG. 1 is a schematic of a subterranean environment 100 

with fractures 106 according to one example of the present 
disclosure. The fractures 106 are located under a surface 

102. A computing device 104 is located on the surface 102. 
The computing device 104 can receive data about the 

subterranean environment 100. For example, the computing 
device 104 can perform noise reflection operations to gen- 

erate original seismic data and an image of the subterranean 

environment 100. The computing device 104 can perform 
fault skeletonization on the original seismic data to deter- 

mine the location of the fractures 106 and plan wellbore 
operates for the subterranean environment 100. 

The computing device 104 can perform operations of 
receiving fault likelihood data, applying a binary mask to the 

fault likelihood data, and performing fault skeletonization 

on the binary distribution data to form fault skeletonization 
data. Additionally, the computing device 104 can convert the 

fault skeletonization data to seismic volume data, combine
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and filter the seismic volume data to form combined seismic 
volume data, and output the combined seismic volume data 

as an image for use in detecting objects to plan a wellbore 

operation. 
FIG. 2 is a schematic of a computing device 200 for fault 

skeletonization according to one example of the present 
disclosure. While FIG. 2 depicts the computing device 200 

as including certain components, other examples may 
involve more, fewer, or different components than are shown 

in FIG. 2. In an example, the computing device 200 may be 

implemented as the computing device 104, as described 
above with respect to FIG. 1. 

As shown, the computing device 200 includes a processor 
202 communicatively coupled to a memory 204 by a bus 

206. The processor 202 can include one processor or mul- 
tiple processors. Non-limiting examples of the processor 

202 include a Field-Programmable Gate Array (FPGA), an 

application-specific integrated circuit (ASIC), a micropro- 
cessor, or any combination of these. The processor 202 can 

execute instructions 208 stored in the memory 204 to 
perform operations. In some examples, the instructions 208 

can include processor-specific instructions generated by a 
compiler or an interpreter from code written in any suitable 

computer-programming language, such as C, C++, C#, or 

Java. 
The memory 204 can include one memory device or 

multiple memory devices. The memory 204 can be non- 
volatile and may include any type of memory device that 

retains stored information when powered off. Non-limiting 
examples of the memory 204 include electrically erasable 

and programmable read-only memory (EEPROM), flash 

memory, or any other type of non-volatile memory. At least 
some of the memory device includes a non-transitory com- 

puter-readable medium from which the processor 202 can 
read instructions 208. A non-transitory computer-readable 

medium can include electronic, optical, magnetic, or other 

storage devices capable of providing the processor 202 with 
the instructions 208 or other program code. Non-limiting 

examples of a non-transitory computer-readable medium 
include magnetic disk(s), memory chip(s), ROM, random- 

access memory (RAM), an ASIC, a configured processor, 
optical storage, or any other medium from which a computer 

processor can read the instructions 208. 

In some examples, the computing device 200 includes a 
display device 222. The display device 222 can represent 

one or more components used to output data. Examples of 
the display device 222 can include a liquid-crystal display 

(LCD), a computer monitor, a touch-screen display, etc. 
The computing device 200 may receive fault likelihood 

data 210 about a subterranean environment. The computing 

device 200 can receive the fault likelihood data 210 from 
seismic images generated from a series of seismic surveys 

taken for an area of the subterranean environment. The area 
may include a geological area being inspected for future 

hydrocarbon exploration. The seismic surveys may include 
transmission of seismic waves into the subterranean envi- 

ronment. The seismic waves may reflect back from the 

geological formation to one or more seismic wave receivers. 
Using the reflected seismic waves, the computing device 

200 may generate the fault likelihood data 210 that repre- 
sents a likelihood that a fault is present at a location within 

the subterranean environment. 
In some examples, the computing device 200 can receive 

the fault likelihood data 210 from a machine learning model. 

The machine learning model may be a deep learning neural 
network that is trained with historic seismic images to output 

the fault likelihood data 210 from the reflected seismic 
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4 
images. The machine learning model can output the fault 

likelihood data 210 in a SEGY format for further processing. 

Additionally or alternatively, the computing device 200 can 

receive the fault likelihood data 210 from deterministic 

methods. The fault likelihood data 210 may be blurry 

representations of faults in the subterranean environment. 

In some examples, the computing device 200 can apply a 

Generative Adversarial Network (GAN) 220 to the fault 

likelihood data 210 to generate data with enhanced resolu- 

tion. The GAN 220 can be trained with historical data and 

the computing device 200 can input the fault likelihood data 

210 to the GAN 220. Based on the fault likelihood data 210 

and the historical data, the GAN 220 can output data in at 

least two directions (e.g., inline, crossline, or depth) with an 

enhanced resolution. For the subterranean environment, the 

data can be output in directions representing an inline 

direction, a crossline direction, and a depth direction. 

The computing device 200 can apply a binary mask filter 

to convert the fault likelihood data 210 to binary distribution 

data 224. In examples where the GAN 220 is applied to the 

fault likelihood data 210, the binary mask filter 212 is 
applied to the data generated from the GAN 220. A tuning 

parameter is used by the binary mask filter 212 to convert the 

fault likelihood data 210 to binary distribution data 224 that 
has pixels of two values arranged in profiles in the at least 

two directions. For example, the tuning parameter may be 
0.9, so that any value of the fault likelihood data 210 that is 

above 0.9 is turned into a first value and any value of the 
fault likelihood data 210 that is below 0.9 is converted to a 

second value. In some examples, the first value can be one 

and correspond to black pixels and the second value can be 
zero and correspond to white pixels. The black pixels of the 

binary distribution data 224 can indicate locations where 
fractures may be present in the subterranean formation. 

The computing device 200 can include a fault skeleton- 

ization engine 214 that can perform fault skeletonization on 
the binary distribution data 224 for each profile to thin the 

binary distribution data 224. The fault skeletonization 
engine 214 can check each pixel of each profile for condi- 

tions and perform operations based on satisfying the con- 
ditions. The fault skeletonization engine 214 can repeat the 

checks for each pixel of each profile until no pixels satisfy 

the conditions. In an example, the fault skeletonization 
engine 214 can perform fault skeletonization for the pixels 

of the profile in the inline direction first, then for the pixels 
of the profile in the crossline direction, and then for the 

pixels of the profile in the depth direction. 
In some examples, the fault skeletonization engine 214 

can check for first conditions of a first particular pixel having 

the first value (e.g., black) and eight neighbors. Each of the 
eight neighbors can be defined by their position with respect 

to the first particular pixel. For example, the first particular 
pixel can be referred to as P1 and have neighbors that are 

located directly above, below, to the left, to the right, and at 
the four diagonals to P1. Each of the neighbors can be 

referred to as one of P2 through P9. For example, the pixel 

directly above P1 can be P2. The sequence of defining P3 
through P9 can continue from P2 in a clockwise direction 

around P1. 
The first conditions can also include that the first particu- 

lar pixel has between two neighbors and six neighbors that 
are the first value (e.g., black) and a number of transitions 

from a second value (e.g., white) to the first value in the 

sequence of the eight neighbors is one. For example, the 
sequence of the eight neighbors from P2 to P9 can have 

values 0, 1, 0, 0, 0, 0, 0, 0, where one is the first value and
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zero is the second value. The sequence satisfies the condition 
of one transition from the second value to the first value. 

In some examples, the first conditions can also include 

that at least one of the eight neighbors at a second position 
(e.g., P2), with respect to the first particular pixel, a fourth 

position (e.g., P4) with respect to the first particular pixel, or 
a sixth position (e.g., P6) with respect to the first particular 

pixel is the second value. Additionally, the first conditions 
can include at least one of the eight neighbors at the fourth 

position with respect to the particular pixel, the sixth posi- 

tion with respect to the first particular pixel, or an eighth 
position with respect to the first particular pixel is the second 

value. 
The fault skeletonization engine 214 can set the first 

particular pixel to the second value upon verifying the first 
conditions are satisfied for the first particular pixel. To 

illustrate, the fault skeletonization engine 214 can determine 

P1 is black and has eight neighbors. P1 has four neighbors 
that are black and the number of transitions from white to 

black in the sequence of the eight neighbors is one. P2 and 
P8 are white. Therefore, the fault skeletonization engine 214 

determines the first conditions are satisfied for P1, so the 
fault skeletonization engine 214 sets P1 to white. The fault 

skeletonization engine 214 repeats the check of the first 

conditions for each pixel of each profile until no pixels 
satisfy the first conditions. 

In some examples, the fault skeletonization engine 214 
checks each pixel of each profile for second conditions. The 

second conditions include that a second particular pixel 
(e.g., P1) is the first value and has eight neighbors, the 

second particular pixel has between two neighbors and six 

neighbors that are the second value, and the number of 
transitions from the second value to the first value in the 

sequence of the eight neighbors is one. 
Alternative to the first conditions, the second conditions 

include that at least one of the eight neighbors at the second 

position (e.g., P2) with respect to the second particular pixel, 
the fourth position (e.g., P4) with respect to the second 

particular pixel, or the eighth position (e.g., P8) with respect 
to the second particular pixel is the second value. Addition- 

ally, the second conditions include at least one of the eight 
neighbors at the second position with respect to the second 

particular pixel, the sixth position (e.g., P6) with respect to 

the second particular pixel, or the eighth position with 
respect to the second particular pixel is the second value. 

The fault skeletonization engine 214 can set the second 
particular pixel to the second value upon verifying the 

second conditions are satisfied for the second particular 
pixel. The fault skeletonization engine 214 can repeat check- 

ing each pixel of the profiles until no pixel satisfies the 

second conditions. 
The fault skeletonization engine 214 can set pixels that do 

not represent a skeleton of a fracture to the second value, so 
the result is fault skeletonization data 226 with pixels 

connected that represent part of a fracture. The fault skel- 
etonization data 226 is a thinned version of the fault likeli- 

hood data 210 that was generated independent of structural 

dip and strike angle data for the subterranean formation. 
In some examples, the computing device 200 can include 

a seismic volume data engine 216. The seismic volume data 
engine 216 can convert the fault skeletonization data 226 to 

seismic volume data 228. The seismic volume data engine 
216 can convert the fault skeletonization data 226 by per- 

forming conventional computations and transformations on 

the fault skeletonization data 226. 
The seismic volume data engine 216 can combine and 

filter the seismic volume data 228 to form combined seismic 
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6 
volume data 230. To do this, the seismic volume data engine 
216 can stack the pixels of the seismic volume data 228 for 

each profile in the at least two directions and sum the seismic 

volume data 228. To illustrate, the profiles in the inline 
direction, crossline direction, and depth direction can be 

stacked and summed. 
In some examples, the seismic volume data 228 can be 

filtered with a binary threshold to normalize the values of the 
seismic volume data 228. The seismic volume data engine 

216 can apply the binary threshold to the summed seismic 

volume data 228 to set pixels with values less than the binary 
threshold to one and to set pixels with values greater than the 

threshold to one. An example of the binary threshold can be 
0.3. The combined seismic volume data 230 is the result of 

summing and filtering the seismic volume data 228. 
The seismic volume data engine 216 can output the 

combined seismic volume data 230 as an image for use in 

detecting objects to plan a wellbore operation. In some 
examples, the image can include indicators of where faults 

are located in the subterranean environment. An example of 
the wellbore operation may be drilling a wellbore. It may not 

be advantageous to drill a wellbore in a location of the 
subterranean environment with fractures, so the image can 

be used to determine where wellbores should be drilled. 

The computing device 200 can also include an action 
module 218. The action module 218 can include executable 

program code for taking one or more actions based on the 
output of seismic volume data engine 216. For example, 

computing device 200 may execute the action module 218 to 
make a decision about where to drill a wellbore in a 

subterranean environment based on fault locations identified 

in the output. The computing device 200 can then generate 
a graphical user interface (GUI) indicating particular areas 

that are suitable for further exploration and display the GUI 
on the display device 222, such as a liquid crystal display or 

light emitting diode display. 

In some examples, the computing device 200 can imple- 
ment the process shown in FIG. 3 for effectuating some 

aspects of the present disclosure. Other examples can 
involve more operations, fewer operations, different opera- 

tions, or a different order of the operations shown in FIG. 3. 
The operations of FIG. 3 are described below with reference 

to the components shown in FIG. 2. 

FIG. 3 is a flow chart of a process for fault skeletonization 
according to one example of the present disclosure. At block 

302, the process involves receiving fault likelihood data 210 
about a subterranean environment. The fault likelihood data 

210 can be received from a machine learning model, deter- 
ministic methods, or some other process. 

At block 304, the process involves applying a binary mask 

filter 212 using a tuning parameter to convert the fault 
likelihood data 210 to binary distribution data 224 having a 

plurality of pixels arranged in a plurality of profiles in at 
least two directions. The binary distribution data 224 has 

two values for the pixels, where a first value indicates likely 
fault presence and a second value indicates fault presence is 

not likely. For fault identification, the profiles are in three 

directions including an inline direction, a crossline direction, 
and a depth direction. 

At block 306, the process involves performing, for each 
profile of the plurality of profiles, fault skeletonization on 

the binary distribution data 224 to form fault skeletonization 
data 226 with pixels connected that represent part of a 

fracture. The fault skeletonization involves checking each 

pixel of the profiles for two sets of conditions. Upon 
determining the conditions of one of the two sets of condi- 

tions are satisfied for a pixel, the pixel can be set to the
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second value. The fault skeletonization can repeat for each 

pixel of each profile until no pixels satisfy the two sets of 

conditions. The fault skeletonization data 226 can represent 

a thinned skeleton of the binary distribution data 224. 

At block 308, the process involves converting the fault 

skeletonization data 226 to seismic volume data 228. Con- 

verting the fault skeletonization data 226 can involve con- 

ventional computations to convert from a pixel-based image 

volume back to a seismic volume. 

At block 310, the process involves combining and filter- 

ing the seismic volume data 228 in the at least two directions 

to form combined seismic volume data 230. The at least two 

directions of the seismic volume data 228 can be stacked and 

summed to combine the seismic volume data 228. The 

summed seismic volume data can have a filter, such as a 

binary threshold, applied to normalize the summed seismic 

volume data into combined seismic volume data 230. 

At block 312, the process involves outputting the com- 

bined seismic volume data 230 as an image for use in 

detecting objects to plan a wellbore operation. The image 

can indicate locations of the subterranean environment 

where faults are present. The wellbore operation, such as 

drilling, may be planned at a location of the subterranean 

environment where there are no faults indicated in the output 

so that drilling fluid is not lost. 

FIG. 4A is a graph of original seismic data for fault 

skeletonization according to one example of the present 

disclosure. A computing device, such as the computing 

device 104 in FIG. 1, may determine the original seismic 

data for a subterranean environment. The original seismic 

data can include faults that are difficult to see in the original 

seismic data. An example of a fault in the original seismic 

data is fault 402. The original seismic data is represented as 

profiles in two directions, but it is possible to represent the 

original seismic data in more than two directions. 

FIG. 4B is a graph of binary distribution data for fault 

skeletonization according to one example of the present 

disclosure. The binary distribution data can be generated 

from fault likelihood data based on the original seismic data 

of FIG. 4A. The binary distribution data shows two pixel 

values, black and white, where black indicates areas of the 

subterranean environment with high likelihood of a fault 

being present. The fault 402 is easier to see in the binary 

distribution data, but the binary distribution data is blurry 

and the precise location of faults can be difficult to determine 

from the binary distribution data. 

FIG. 4C is a graph of combined seismic volume data after 

fault skeletonization according to one example of the present 

disclosure. The combined seismic volume data can be gen- 

erated from a fault skeletonization process to form fault 

skeletonization data with pixels connected that represent a 

part of a fracture. The fault skeletonization data for each 

profile in the two directions can then be converted to seismic 

volume data, combined, and filtered to produce combined 

seismic data. The combined seismic data provides a thinned 

skeleton of the faults in the subterranean environment. The 

location of fault 402 is more precisely represented in the 

combined seismic data than the binary distribution data. The 

combined seismic data can be output to be used detecting 

object to plan a wellbore operation. 

In some aspects, a system, a method, and a non-transitory 

computer readable medium for fault skeletonization are 
provided according to one or more of the following 

examples: 
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As used below, any reference to a series of examples is to 

be understood as a reference to each of those examples 

disjunctively (e.g., “Examples 1-4” is to be understood as 

“Examples 1, 2, 3, or 4”). 
Example 1 is a system comprising: a processing device; 

and a memory device that includes instructions executable 
by the processing device for causing the processing device 

to perform operations comprising: receiving fault likelihood 
data about a subterranean environment; applying a binary 

mask filter using a tuning parameter to convert the fault 

likelihood data to binary distribution data having a plurality 
of pixels arranged in a plurality of profiles in at least two 

directions; performing, for each profile of the plurality of 
profiles, fault skeletonization on the binary distribution data 

to form fault skeletonization data with pixels connected that 
represent part of a fracture; converting the fault skeleton- 

ization data to seismic volume data; combining and filtering 

the seismic volume data in the at least two directions to form 
combined seismic volume data; and outputting the com- 

bined seismic volume data as an image for use in detecting 
objects to plan a wellbore operation. 

Example 2 is the system of example 1, wherein the 
memory device further includes instructions executable by 

the processing device for causing the processing device to 

apply a Generative Adversarial Network to the fault likeli- 
hood data to generate data with enhanced resolution prior to 

applying the binary mask filter. 
Example 3 is the system of examples 1-2, wherein the 

memory device further includes instructions executable by 
the processing device for causing the processing device to 

perform fault skeletonization by performing operations 

comprising: checking each pixel of the plurality of pixels for 
a first plurality of conditions, the first plurality of conditions 

comprising: a first particular pixel has a first value and eight 
neighbors, wherein each of the eight neighbors is defined by 

their position with respect to the first particular pixel; the 

first particular pixel has between two neighbors and six 
neighbors that are the first value; a number of transitions 

from a second value to the first value in a sequence of the 
eight neighbors is one; at least one of the eight neighbors at 

a second position with respect to the first particular pixel, a 
fourth position with respect to the first particular pixel, or a 

sixth position with respect to the first particular pixel is the 

second value; and at least one of the eight neighbors at the 
fourth position with respect to the first particular pixel, the 

sixth position with respect to the first particular pixel, or an 
eighth position with respect to the first particular pixel is the 

second value; setting the first particular pixel to the second 
value upon verifying the first plurality of conditions is 

satisfied for the first particular pixel; repeating checking 

each pixel of the plurality of pixels until no pixel of the 
plurality of pixels satisfies the first plurality of conditions. 

Example 4 is the system of examples 1-3, wherein the 
memory device further includes instructions executable by 

the processing device for causing the processing device to 
perform fault skeletonization by performing operations 

comprising: checking each pixel of the plurality of pixels for 

a second plurality of conditions, the second plurality of 
conditions comprising: a second particular pixel is the first 

value and has eight neighbors, wherein each of the eight 
neighbors is defined by their position with respect to the 

second particular pixel; the second particular pixel has 
between two neighbors and six neighbors that are the second 

value; the number of transitions from the second value to the 

first value in the sequence of the eight neighbors is one; at 
least one of the eight neighbors at the second position with 

respect to the second particular pixel, the fourth position
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with respect to the second particular pixel, or the eighth 

position with respect to the second particular pixel is the 

second value; and at least one of the eight neighbors at the 

second position with respect to the second particular pixel, 

the sixth position with respect to the second particular pixel, 

or the eighth position with respect to the second particular 

pixel is the second value; setting the second particular pixel 

to the second value upon verifying the second plurality of 

conditions is satisfied for the second particular pixel; and 

repeating checking each pixel of the plurality of pixels until 

no pixel of the plurality of pixels satisfies the second 

plurality of conditions. 

Example 5 is the system of examples 1-4, wherein the 

memory device further includes instructions executable by 

the processing device for causing the processing device to 

receive fault likelihood data about the subterranean envi- 

ronment from a machine learning model. 

Example 6 is the system of examples 1-5, wherein the 

memory device further includes instructions executable by 

the processing device for causing the processing device to 

perform the operations independent of structural dip and 
strike angle data for the subterranean environment. 

Example 7 is the system of examples 1-6, wherein the 

plurality of profiles are in three directions comprising an 
inline direction, a crossline direction, and a depth direction. 

Example 8 is a method, comprising: receiving fault like- 
lihood data about a subterranean environment; applying a 

binary mask filter using a tuning parameter to convert the 
fault likelihood data to binary distribution data having a 

plurality of pixels arranged in a plurality of profiles in at 

least two directions; performing, for each profile of the 
plurality of profiles, fault skeletonization on the binary 

distribution data to form fault skeletonization data with 
pixels connected that represent part of a fracture; converting 

the fault skeletonization data to seismic volume data; com- 

bining and filtering the seismic volume data in the at least 
two directions to form combined seismic volume data; and 

outputting the combined seismic volume data as an image 
for use in detecting objects to plan a wellbore operation. 

Example 9 is the method of example 8, further comprising 
applying a Generative Adversarial Network to the fault 

likelihood data to generate data with enhanced resolution 

prior to applying the binary mask filter. 
Example 10 is the method of examples 8-9, wherein 

performing fault skeletonization comprises: checking each 
pixel of the plurality of pixels for a first plurality of 

conditions, the first plurality of conditions comprising: a first 
particular pixel has a first value and eight neighbors, wherein 

each of the eight neighbors is defined by their position with 

respect to the first particular pixel; the first particular pixel 
has between two neighbors and six neighbors that are the 

first value; a number of transitions from a second value to 
the first value in a sequence of the eight neighbors is one; at 

least one of the eight neighbors at a second position with 
respect to the first particular pixel, a fourth position with 

respect to the first particular pixel, or a sixth position with 

respect to the first particular pixel is the second value; and 
at least one of the eight neighbors at the fourth position with 

respect to the first particular pixel, the sixth position with 
respect to the first particular pixel, or an eighth position with 

respect to the first particular pixel is the second value; setting 
the first particular pixel to the second value upon verifying 

the first plurality of conditions is satisfied for the first 

particular pixel; repeating checking each pixel of the plu- 
rality of pixels until no pixel of the plurality of pixels 

satisfies the first plurality of conditions. 
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Example 11 is the method of examples 8-10, wherein 

performing fault skeletonization further comprises: check- 

ing each pixel of the plurality of pixels for a second plurality 

of conditions, the second plurality of conditions comprising: 
a second particular pixel is the first value and has eight 

neighbors, wherein each of the eight neighbors is defined by 
their position with respect to the second particular pixel; the 

second particular pixel has between two neighbors and six 
neighbors that are the second value; the number of transi- 

tions from the second value to the first value in the sequence 

of the eight neighbors is one; at least one of the eight 
neighbors at the second position with respect to the second 

particular pixel, the fourth position with respect to the 
second particular pixel, or the eighth position with respect to 

the second particular pixel is the second value; and at least 
one of the eight neighbors at the second position with respect 

to the second particular pixel, the sixth position with respect 

to the second particular pixel, or the eighth position with 
respect to the second particular pixel is the second value; 

setting the second particular pixel to the second value upon 
verifying the second plurality of conditions is satisfied for 

the second particular pixel; and repeating checking each 
pixel of the plurality of pixels until no pixel of the plurality 

of pixels satisfies the second plurality of conditions. 

Example 12 is the method of examples 8-11, further 
comprising receiving fault likelihood data about the subter- 

ranean environment from a machine learning model. 
Example 13 is the method of examples 8-12, further 

comprising performing the operations independent of struc- 
tural dip and strike angle data for the subterranean environ- 

ment. 

Example 14 is the method of examples 8-13, wherein the 
plurality of profiles are in three directions comprising an 

inline direction, a crossline direction, and a depth direction. 
Example 15 is a non-transitory computer-readable 

medium comprising instructions that are executable by a 

processing device for causing the processing device to 
perform operations comprising: receiving fault likelihood 

data about a subterranean environment; applying a binary 
mask filter using a tuning parameter to convert the fault 

likelihood data to binary distribution data having a plurality 
of pixels arranged in a plurality of profiles in at least two 

directions; performing, for each profile of the plurality of 

profiles, fault skeletonization on the binary distribution data 
to form fault skeletonization data with pixels connected that 

represent part of a fracture; converting the fault skeleton- 
ization data to seismic volume data; combining and filtering 

the seismic volume data in the at least two directions to form 
combined seismic volume data; and outputting the com- 

bined seismic volume data as an image for use in detecting 

objects to plan a wellbore operation. 
Example 16 is the non-transitory computer-readable 

medium of example 15, further comprising instructions 
executable by the processing device for causing the process- 

ing device to apply a Generative Adversarial Network to the 
fault likelihood data to generate data with enhanced resolu- 

tion prior to applying the binary mask filter. 

Example 17 is the non-transitory computer-readable 
medium of examples 15-16, further comprising instructions 

executable by the processing device for causing the process- 
ing device to perform fault skeletonization by performing 

operations comprising: checking each pixel of the plurality 
of pixels for a first plurality of conditions, the first plurality 

of conditions comprising: a first particular pixel has a first 

value and eight neighbors, wherein each of the eight neigh- 
bors is defined by their position with respect to the first 

particular pixel; the first particular pixel has between two
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neighbors and six neighbors that are the first value; a number 

of transitions from a second value to the first value in a 

sequence of the eight neighbors is one; at least one of the 

eight neighbors at a second position with respect to the first 

particular pixel, a fourth position with respect to the first 

particular pixel, or a sixth position with respect to the first 

particular pixel is the second value; and at least one of the 

eight neighbors at the fourth position with respect to the first 

particular pixel, the sixth position with respect to the first 

particular pixel, or an eighth position with respect to the first 

particular pixel is the second value; setting the first particu- 

lar pixel to the second value upon verifying the first plurality 

of conditions is satisfied for the first particular pixel; repeat- 

ing checking each pixel of the plurality of pixels until no 

pixel of the plurality of pixels satisfies the first plurality of 

conditions. 

Example 18 is the non-transitory computer-readable 

medium of examples 15-17, further comprising instructions 

executable by the processing device for causing the process- 

ing device to perform fault skeletonization by performing 

operations comprising: checking each pixel of the plurality 

of pixels for a second plurality of conditions, the second 

plurality of conditions comprising: a second particular pixel 

is the first value and has eight neighbors, wherein each of the 

eight neighbors is defined by their position with respect to 

the second particular pixel; the second particular pixel has 

between two neighbors and six neighbors that are the second 

value; the number of transitions from the second value to the 

first value in the sequence of the eight neighbors is one; at 

least one of the eight neighbors at the second position with 

respect to the second particular pixel, the fourth position 

with respect to the second particular pixel, or the eighth 

position with respect to the second particular pixel is the 

second value; and at least one of the eight neighbors at the 

second position with respect to the second particular pixel, 

the sixth position with respect to the second particular pixel, 

or the eighth position with respect to the second particular 

pixel is the second value; setting the second particular pixel 

to the second value upon verifying the second plurality of 

conditions is satisfied for the second particular pixel; and 

repeating checking each pixel of the plurality of pixels until 

no pixel of the plurality of pixels satisfies the second 

plurality of conditions. 

Example 19 is the non-transitory computer-readable 

medium of examples 15-18, further comprising includes 

instructions executable by the processing device for causing 

the processing device to receive fault likelihood data about 

the subterranean environment from a machine learning 
model. 

Example 20 is the non-transitory computer-readable 
medium of examples 15-19, further comprising instructions 

executable by the processing device for causing the process- 

ing device to perform the operations independent of struc- 
tural dip and strike angle data for the subterranean environ- 

ment. 

The foregoing description of certain examples, including 

illustrated examples, has been presented only for the pur- 
pose of illustration and description and is not intended to be 

exhaustive or to limit the disclosure to the precise forms 

disclosed. Numerous modifications, adaptations, and uses 
thereof will be apparent to those skilled in the art without 

departing from the scope of the disclosure. 
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What is claimed is: 
1. A system comprising: 
a processing device; and 
a memory device that includes instructions executable by 

the processing device for causing the processing device 
to perform operations comprising: 
receiving fault likelihood data about a subterranean 

environment; 
applying a binary mask filter using a tuning parameter 

to convert the fault likelihood data to binary distri- 
bution data having a plurality of pixels arranged in a 
plurality of profiles in at least two directions; 

performing, for each profile of the plurality of profiles, 
fault skeletonization on the binary distribution data 
to form fault skeletonization data with pixels con- 
nected that represent part of a fracture, the fault 
skeletonization comprising: 
checking each pixel of the plurality of pixels for a 

first plurality of conditions: 
setting a first particular pixel having a first value to 

a second value upon verifying the first plurality of 
conditions is satisfied for the first particular pixel 
based on neighboring pixels of the first particular 
pixel; and 

repeating checking each pixel of the plurality of 
pixels until no pixel of the plurality of pixels 
satisfies the first plurality of conditions; 

converting the fault skeletonization data to seismic 
volume data; 

combining and filtering the seismic volume data in the 
at least two directions to form combined seismic 
volume data; and 

outputting the combined seismic volume data as an 
image for use in detecting objects to plan a wellbore 
operation. 

2. The system of claim 1, wherein the memory device 
further includes instructions executable by the processing 
device for causing the processing device to apply a Genera- 
tive Adversarial Network to the fault likelihood data to 
generate data with enhanced resolution prior to applying the 
binary mask filter. 

3. The system of claim 1, wherein 

the first plurality of conditions comprise: 
the first particular pixel has eight neighbors, wherein 

each of the eight neighbors is defined by their 

position with respect to the first particular pixel; 
the first particular pixel has between two neighbors and 

six neighbors that are the first value; and 
a number of transitions from a second value to the first 

value in a sequence of the eight neighbors is one. 
4. The system of claim 1, wherein the memory device 

further includes instructions executable by the processing 

device for causing the processing device to perform fault 
skeletonization by performing operations comprising: 

checking each pixel of the plurality of pixels for a second 
plurality of conditions, the second plurality of condi- 

tions comprising: 
a second particular pixel is the first value and has eight 

neighbors, wherein each of the eight neighbors is 

defined by their position with respect to the second 
particular pixel; 

the second particular pixel has between two neighbors 
and six neighbors that are the second value; 

the number of transitions from the second value to the 
first value in the sequence of the eight neighbors is 

one; 
at least one of the eight neighbors at the second position 

with respect to the second particular pixel, the fourth 

position with respect to the second particular pixel,
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or the eighth position with respect to the second 
particular pixel is the second value; and 

at least one of the eight neighbors at the second position 

with respect to the second particular pixel, the sixth 
position with respect to the second particular pixel, 

or the eighth position with respect to the second 
particular pixel is the second value; 

setting the second particular pixel to the second value 
upon verifying the second plurality of conditions is 

satisfied for the second particular pixel; and 

repeating checking each pixel of the plurality of pixels 
until no pixel of the plurality of pixels satisfies the 

second plurality of conditions. 
5. The system of claim 1, wherein the memory device 

further includes instructions executable by the processing 
device for causing the processing device to receive fault 

likelihood data about the subterranean environment from a 

machine learning model. 
6. The system of claim 1, wherein the memory device 

further includes instructions executable by the processing 
device for causing the processing device to perform the 

operations independent of structural dip and strike angle 
data for the subterranean environment. 

7. The system of claim 1, wherein the plurality of profiles 

are in three directions comprising an inline direction, a 
crossline direction, and a depth direction. 

8. A method, comprising: 
receiving fault likelihood data about a subterranean envi- 

ronment; 

applying a binary mask filter using a tuning parameter to 

convert the fault likelihood data to binary distribution 

data having a plurality of pixels arranged in a plurality 
of profiles in at least two directions; 

performing, for each profile of the plurality of profiles, 
fault skeletonization on the binary distribution data to 

form fault skeletonization data with pixels connected 

that represent part of a fracture, the fault skeletoniza- 
tion comprising: 

checking each pixel of the plurality of pixels for a first 
plurality of conditions; 

setting a first particular pixel having a first value to a 
second value upon verifying the first plurality of 

conditions is satisfied for the first particular pixel 

based on neighboring pixels of the first particular 
pixel; and 

repeating checking each pixel of the plurality of pixels 
until no pixel of the plurality of pixels satisfies the 

first plurality of conditions; 
converting the fault skeletonization data to seismic vol- 

ume data; 

combining and filtering the seismic volume data in the at 
least two directions to form combined seismic volume 

data; and 
outputting the combined seismic volume data as an image 

for use in detecting objects to plan a wellbore opera- 
tion. 

9. The method of claim 8, further comprising applying a 

Generative Adversarial Network to the fault likelihood data 
to generate data with enhanced resolution prior to applying 

the binary mask filter. 
10. The method of claim 8, wherein 

the first plurality of conditions comprise: 
the first particular pixel has eight neighbors, wherein 

each of the eight neighbors is defined by their 

position with respect to the first particular pixel; 
at least one of the eight neighbors at a second position 

with respect to the first particular pixel, a fourth 
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position with respect to the first particular pixel, or a 

sixth position with respect to the first particular pixel 

is the second value; and 

at least one of the eight neighbors at the fourth position 

with respect to the first particular pixel, the sixth 

position with respect to the first particular pixel, or 

an eighth position with respect to the first particular 

pixel is the second value. 

11. The method of claim 8, wherein performing fault 

skeletonization further comprises: 

checking each pixel of the plurality of pixels for a second 

plurality of conditions, the second plurality of condi- 

tions comprising: 

a second particular pixel is the first value and has eight 

neighbors, wherein each of the eight neighbors is 

defined by their position with respect to the second 

particular pixel; 

the second particular pixel has between two neighbors 

and six neighbors that are the second value; 

the number of transitions from the second value to the 

first value in the sequence of the eight neighbors is 
one; 

at least one of the eight neighbors at the second position 

with respect to the second particular pixel, the fourth 
position with respect to the second particular pixel, 

or the eighth position with respect to the second 
particular pixel is the second value; and 

at least one of the eight neighbors at the second position 
with respect to the second particular pixel, the sixth 

position with respect to the second particular pixel, 

or the eighth position with respect to the second 
particular pixel is the second value; 

setting the second particular pixel to the second value 
upon verifying the second plurality of conditions is 

satisfied for the second particular pixel; and 

repeating checking each pixel of the plurality of pixels 
until no pixel of the plurality of pixels satisfies the 

second plurality of conditions. 
12. The method of claim 8, further comprising receiving 

fault likelihood data about the subterranean environment 
from a machine learning model. 

13. The method of claim 8, further comprising performing 

the operations independent of structural dip and strike angle 
data for the subterranean environment. 

14. The method of claim 8, wherein the plurality of 
profiles are in three directions comprising an inline direc- 

tion, a crossline direction, and a depth direction. 
15. A non-transitory computer-readable medium compris- 

ing instructions that are executable by a processing device 

for causing the processing device to perform operations 
comprising: 

receiving fault likelihood data about a subterranean envi- 
ronment; 

applying a binary mask filter using a tuning parameter to 
convert the fault likelihood data to binary distribution 

data having a plurality of pixels arranged in a plurality 

of profiles in at least two directions; 
performing, for each profile of the plurality of profiles, 

fault skeletonization on the binary distribution data to 
form fault skeletonization data with pixels connected 

that represent part of a fracture, the fault skeletoniza- 
tion comprising: 

checking each pixel of the plurality of pixels for a first 

plurality of conditions; 
setting a first particular pixel having a first value to a 

second value upon verifying the first plurality of
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conditions is satisfied for the first particular pixel 

based on neighboring pixels of the first particular 

pixel; and 

repeating checking each pixel of the plurality of pixels 

until no pixel of the plurality of pixels satisfies the 

first plurality of conditions; 

converting the fault skeletonization data to seismic vol- 
ume data; 

combining and filtering the seismic volume data in the at 
least two directions to form combined seismic volume 

data; and 
outputting the combined seismic volume data as an image 

for use in detecting objects to plan a wellbore opera- 

tion. 
16. The non-transitory computer-readable medium of 

claim 15, further comprising instructions executable by the 
processing device for causing the processing device to apply 

a Generative Adversarial Network to the fault likelihood 
data to generate data with enhanced resolution prior to 

applying the binary mask filter. 

17. The non-transitory computer-readable medium of 
claim 15, 

wherein the first plurality of conditions comprise: 
the first particular pixel has eight neighbors, wherein 

each of the eight neighbors is defined by their 
position with respect to the first particular pixel; 

the first particular pixel has between two neighbors and 

six neighbors that are the first value; 
a number of transitions from a second value to the first 

value in a sequence of the eight neighbors is one; 
at least one of the eight neighbors at a second position 

with respect to the first particular pixel, a fourth 

position with respect to the first particular pixel, or a 
sixth position with respect to the first particular pixel 

is the second value; and 
at least one of the eight neighbors at the fourth position 

with respect to the first particular pixel, the sixth 
position with respect to the first particular pixel, or 

an eighth position with respect to the first particular 

pixel is the second value. 
18. The non-transitory computer-readable medium of 

claim 15, further comprising instructions executable by the 
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processing device for causing the processing device to 
perform fault skeletonization by performing operations 
comprising: 

checking each pixel of the plurality of pixels for a second 
plurality of conditions, the second plurality of condi- 
tions comprising: 

a second particular pixel is the first value and has eight 

neighbors, wherein each of the eight neighbors is 
defined by their position with respect to the second 

particular pixel; 
the second particular pixel has between two neighbors 

and six neighbors that are the second value; 
the number of transitions from the second value to the 

first value in the sequence of the eight neighbors is 

one; 
at least one of the eight neighbors at the second position 

with respect to the second particular pixel, the fourth 
position with respect to the second particular pixel, 

or the eighth position with respect to the second 
particular pixel is the second value; and 

at least one of the eight neighbors at the second position 

with respect to the second particular pixel, the sixth 
position with respect to the second particular pixel, 

or the eighth position with respect to the second 
particular pixel is the second value; 

setting the second particular pixel to the second value 
upon verifying the second plurality of conditions is 

satisfied for the second particular pixel; and 

repeating checking each pixel of the plurality of pixels 
until no pixel of the plurality of pixels satisfies the 

second plurality of conditions. 
19. The non-transitory computer-readable medium of 

claim 15, further comprising includes instructions execut- 
able by the processing device for causing the processing 

device to receive fault likelihood data about the subterranean 

environment from a machine learning model. 
20. The non-transitory computer-readable medium of 

claim 15, further comprising instructions executable by the 
processing device for causing the processing device to 

perform the operations independent of structural dip and 
strike angle data for the subterranean environment. 

* * * * *


