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Summary 

 
The construction of subsurface velocity models and 
reservoir characterization depend heavily on the resolution 
of seismic interpretation. In the field of seismic exploration, 
combining multiple stacks, e.g. multi-angle, multi-azimuth, 
multi-frequency, of seismic data is becoming more and 
more common as a way to improve resolution. With the 
help of these stacks, seismic data at different offset angles 

can be processed, revealing more details about underlying 
structures and improving the imaging of intricate 
geological features. Delineating faults through deep 
learning becomes an important step in building subsurface 
structures. When deep learning fault prediction is used on 
multi-offset-angle stacks, it can help with seismic 
interpretation by displaying distinct fault features along 
each offset-angle stack. It's still unclear, though, how to 

combine the outcomes of each prediction to produce the 
ultimate "best-of-all" output. In this abstract, we use the 
convolutional network to analyze each predicted fault in 
latent space and then combine them based on frequency 
analysis. The final output will mitigate break faults and 
compile the most dependable faults from each angle stack 
after combining. Combining multi-frequency or multi-
azimuth faults is another application for this technique. 
 

Introduction 

 
Through the collection of seismic data at different source-
receiver offset angles, multi-offset-angle stacks aid in the 
identification and characterization of subsurface structures 
and offer a more thorough understanding of the subsurface. 
They aid in the more precise description of anisotropic 
subsurface characteristics, which is crucial for 

comprehending fracture in various directions. It is possible 
to characterize faults and fractures in the subsurface and 
gain a better understanding of anisotropy by collecting data 
at different angles. 
 
Liu et al. (2011) introduced a local similarity to stack angle 
domain common image gathers for normalization of 
illumination. The goal of this technique is to restore 

migration amplitude while attenuating migration artifacts. 
Zhu et al. (2019) performed fault analysis on multi-azimuth 
stacked data, they demonstrated that the largest azimuthal 
anisotropy is found in stacked data at the azimuth 
perpendicular to fractures, whereas the smallest anisotropy 
is found in stacked data at the azimuth parallel to fractures. 
Nevertheless, neither how to combine multiple azimuth 
faults nor how to produce a better-stacked result from 

multi-angle data are addressed in those papers.  

However, steeply dipping events tend to be smeared or 

blurred by the regular stacking process, which reduces the 
accuracy of representing the actual geological structure. It 
might have trouble correctly imaging thin geological beds. 
Scientists in the field of computer vision employ a variety 
of signal processing techniques, including the discrete 
wavelet transform (Rhif et al., 2019), to extract features 
from images by shift-invariant shearlet transform (Wang et 
al., 2018), and the weighted-average approach (Azis et al., 

2015). Since the stacking process may potentially smear 
thin events, it can be difficult to discovery and understand 
thin layers beneath the surface. 
 
The multi-angle stack information might not be fully 
utilized by machine learning interpretations. Interpretations 
that depend on offset angle, e.g., feature probability maps 
from various seismic data, displaying various viewpoints 

from various outcomes. This may make it challenging to 
compile the data and arrive at a final feature prediction. 
Multiple results can also introduce uncertainty about the 
feature (Angelovich et al., 2021). The uncertainty can 
therefore result in ineffective planning of a borehole path or 
ineffective optimization of the borehole production. One 
way to address this issue is to consider ensemble learning 
algorithms that can use several base learnings to train 
machine learning models and improve predictive 

performance. The prediction of features associated with 
multi-angle dependent seismic data can be used to train any 
machine learning model. Metrics can be assessed using a 
weighting system, and the predictions can be combined to 
produce a final prediction result. 
 
In this abstract, we first perform frequency-dependent deep 
learning fault prediction on multiple angle stacks, and then 

extract multi-layer features in latent space using another 
deep learning framework to generate a single prediction 
volume containing all the fault details. Compared to a 
single volume, the fused result displays a better prediction 
volume. 
 
Method 

 

The construction of subsurface velocity models and 
reservoir characterization depend heavily on the resolution 
of seismic interpretation. There are numerous reasons why 
seismic interpretation may have low resolution, including 
interpretation techniques, data availability, and noise in the 
data. Geoscientists created angle stacks to measure the 
reflectivity at a specific incident angle in order to gain a 
better understanding of subsurface structure. Stacking the 

data from moveout corrected common reflection point 
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gathers within constant angle mutes is the most popular 
method for creating angle stacks. This procedure can help 
draw attention to particular geological features and offer 
insightful information about the underlying structures. 
Changes or anomalies in the angle stacks may point to 

particular geological structures. An example is displayed in 
Figure 1.  
 
Figure 1 illustrates the variable resolution of seismic data 
through different angle stacks. The fault prediction using 
deep learning (Jiang et al., 2022) exhibits comparable 
faulting with marginally different small-scale or finer 
faulting. The secret to building a velocity model is figuring 

out how to construct an enhanced fault volume from 
various angle stacks to improve seismic interpretation 
resolution. 
 

 
 

Figure 1: Multiple angle stacks with their deep learning 
fault predictions on the Parihaka dataset, New Zealand.  

 
In order to produce a single, improved fault volume, we 
adaptively added each fault feature after analyzing it in 
latent space. Li et al. (2013) presented a deep learning 
framework that uses saliency-based feature analysis to 
combine visible and infrared images. We modified their 
procedure to break down fault prediction from various 
angle stacks and then utilize a VGG19 network to extract 

features in latent space from the fault prediction. 
 
To fuse faults from different angle stacks, we first 
decompose the source data into the base part and the detail 
part following Li et al., (2018) with Tikhonov 
regularization. Then the base parts are obtained by solving 
the optimization problem: 
 

𝐷𝑏𝑎𝑠𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝐷 − 𝐷𝑏𝑎𝑠𝑒‖
2

+ 𝛾 (‖𝑐𝑥 ∗ 𝐷𝑏𝑎𝑠𝑒‖
2

+ ‖𝑐𝑦 ∗ 𝐷𝑏𝑎𝑠𝑒‖
2

)  

𝐷𝑑𝑒𝑡𝑎𝑖𝑙 = 𝐷 − 𝐷𝑏𝑎𝑠𝑒 

 

Where D is the input data, 𝑐𝑥 = [−1, 1] and 𝑐𝑦 = [−1, 1]𝑇 

are the horizonal and vertical gradient operators, 𝛾 is set to 
6 in this paper. Figure 2 shows the base fault and the 
detailed fault. 
 

 
 

Figure 2: The base fault (top) and the detailed fault 

(bottom) after Tikhonov regularization. 
 
The overall workflow is shown in Figure 3: 
 

 
 

Figure 3: The overall workflow for fault fusion from multi-

angle stacks.  
 
We implemented a deep learning network, e.g. VGG19, to 
analyze the detailed faults and to extract deep features from 
latent space. The weight coefficient from the original 
VGG19 network is applied to each angle stack dependent 
fault volume at different layers, the activity level map at 
each layer i can be calculated as: 
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𝑀𝑎𝑝𝐶𝑘
𝑖 (𝑥, 𝑦) = ‖𝜑𝑘

𝑖,𝑚(𝑥, 𝑦)‖
1
 

 
Where k is the feature maps extracted by the i-th layer and 
m is the channel number of the i-th layer, m is a variable 

depending on which VGG19 layer was used. (𝑥, 𝑦) is the 

position in the feature maps. The 𝑙1-norm is considered to 
the activity level measure of the detail fault. We then can 
apply different weighting algorithms to combine feature 
maps, e.g., majority vote, accuracy weighting, or entropy 
weighting. In this case, we picked the entropy-based 
average operator to calculate the final activity map and 

make the fusion method more robust to register data: 
 

𝐸 = −𝑃(𝑀𝑎𝑝𝐶𝑘
𝑖 (𝑥, 𝑦) = 0)𝑙𝑜𝑔2 (𝑃(𝑀𝑎𝑝𝐶𝑘

𝑖 (𝑥, 𝑦) = 0)

− 𝑃(𝑀𝑎𝑝𝐶𝑘
𝑖 (𝑥, 𝑦) = 1)) 𝑙𝑜𝑔2𝑃(𝑀𝑎𝑝𝐶𝑘

𝑖 (𝑥, 𝑦)

= 1) 
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Where 𝑀𝑎𝑝𝐶𝑘
𝑖  is the activity level map at location (x,y) , k 

denotes the number of activity level map, set to 3 in this 

case. 𝑊𝑘
𝑖  is the initial weight map value in the range of 

[0,1].  
 
Figure 4 shows some feature maps extracted from VGG19 
network after latent analysis.  
 

 
 

Figure 4: Feature maps from deep learning framework.  
 
After we get each initial weight map, we need to use the 
upsampling operator to resize the weight maps to the input 
detail fault size. After that, we will obtain four pairs of 
weight maps. For each pair, the fused detail fault is 
obtained as: 

 

𝐷𝑑𝑒𝑡𝑎𝑖𝑙 = 𝑚𝑎𝑥 (∑ 𝑊𝑛
𝑖(𝑥, 𝑦) ∗

𝐾

𝑛=1
𝐼𝑛(𝑥, 𝑦)|𝑖 ∈ {1,2,3,4}) 

 

Where 𝐼𝑛 is the detailed fault pixel from Figure 2.  

 
The final fused faults from different angle stacks are 
reconstructed by the fused base faults and the fused 
detailed faults as shown in Figure 5: 
 

 
 

Figure 5: (a) Faults from near-angle stack; (b) Faults from 
mid-angle stack; (c) Faults from far-angle stack; (d) Faults 
from deep learning fusion result. Black arrows point out 
improvements over faults from different angle stacks.   
 
Discussions 

 

In order to improve the understanding of subsurface 
structures and properties, different seismic data sources and 
interpretation methods are integrated in seismic 
interpretation fusion. The goal of this procedure is to 
produce a more thorough and accurate representation of the 
subsurface geological features. In data fusion, a variety of 
machine learning methods are available, including feature 
learning (Shi et al. , 2022), transfer learning (Hilal et al., 

2022), collaborative learning (Song and Chai, 2018), 
integration of semantics (Samourkasidis and Athanasiadis, 
2020), and so forth. These algorithms have the potential to 
enhance predictive performance and offer adaptable 
capabilities to manage intricate and changing situations. 
Data integration from multiple offset angle stacks, multiple 
azimuth angle stacks, or multiple frequency dependent 
stacks is necessary for seismic imaging and interpretation. 
By combining data from multiple sources, data fusion plays 

a critical role in quantifying uncertainties and aiding 
geologists and geophysicists in their understanding of their 
subsurface models. 
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The purpose of this work is to design a workflow to 
combine multiple seismic interpretation objects, such as 
faults, horizons, etc. It is also appropriate to fuse 
interpretation results from multiple azimuth angle stacks. 
The largest azimuthal anisotropy and most pronounced 

fault features are found in the stacked data at the azimuth 
perpendicular to fractures, whereas the smallest azimuthal 
anisotropy and most subdued fault features are found in the 
stacked data at the azimuth parallel to fractures. If we can 
fuse interpreted faults from different azimuths to reduce 
uncertainty and non-uniqueness, the multi-azimuth data 
will bring significant improvement with fault identification 
and interpretation. 

 
Conclusions 

 
In this paper, we present a deep learning based framework 
in latent space to learn seismic fault features in order to 
consistently performing data fusion, which allows 
interpreted faults from multiple angle stacks to be fused. 
When compared to faults from different angle stacks, the 

fused faults display more continuous segments and higher 
resolution. The technique can also be used to combine other 
interpretation objects that were interpreted in the same 
location but using different techniques or resources, e.g., 
predictions of multi-azimuth faults. To further assist in 
registering pixels with the greatest saliency effect, the deep 
learning framework utilized in this work extracts feature 
maps and analyzes latent features. Combining with 

additional data formats, e.g., seismic facies or well logs, we 
could contribute more to the creation of an extensive 
subsurface velocity model and to further enhance 
resolution. 
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