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various aspects, the seismic attributes can

be normalized and have importance coefficients determined. A sub-set of seismic attributes

can be selected to reduce computing resources and processing time. The deep learning neural network can utilize the seismic data and

seismic attributes to determine parameter:

zed results representing fault probabilities. The fault prediction system can utilize the fault

probabilities to determine fault predictions which can be represented as a predicted new seismic data, such as using a three-dimensional

image.
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DEEP LEARNING SEISMIC ATTRIBUTE FAULT PREDICTIONS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Application Serial No. 16/745,044, filed
by Fan Jiang, et al. on January 16, 2020, entitled “DEEP LEARNING SEISMIC ATTRIBUTE
FAULT PREDICTIONS” which claims benefit of U.S. Provisional Application Serial No.
62/948.,553, filed by Fan Jiang, et al. on December 16, 2019, entitled “DEEP LEARNING
SEISMIC ATTRIBUTE FAULT PREDICTIONS,” commonly assigned with these applications
and incorporated herein by reference 1n its entirety.

TECHNICAL FIELD

[0002] This application 1s directed, in general, to processing seismic data and, more
specifically, to predicting subterranean faults.

BACKGROUND

[0003] When developing a well operation plan, a drilling plan, or other well system
operation, one 1nput that can be used for those plans 1s seismic data representing faults and
subterranean formation characteristics. Drilling plans, for example, can be altered to avoid
subterranean hazards or to enhance natural fractures for improved hydrocarbon flow. Current
techniques for processing the seismic data may lead to a fault representation that does not have
the desired level of accuracy, such as false positives on fault detection or missing faults. Some
conventional techniques use deep learning neural networks while not refining the seismic data
potentially leading to less accurate models. Other techniques do not use deep learning models
which may lead to the analysis process being more burdensome. A technique that can increase
the fault prediction accuracy while not exceeding computational resource thresholds would be
beneficial.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Reference 1s now made to the following descriptions taken in conjunction with the
accompanying drawings, in which:

[0005] FIG. 1 1s an illustration of a diagram of an example well system developed using
seismic data fault predictions;

[0006] FIG. 2 1s an 1illustration of a diagram of an example offshore well system using

seismic data fault predictions;
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[0007] FIG. 3A 1s an illustration of a listing of an example seismic attribute list;

[0008] FIG. 3B 1s an illustration of a chart of an example importance coefficient graph
using the seismic attribute list of FIG. 3A;

[0009] FIG. 3C 1s an 1illustration of representative data of an example seismic attribute
replacement, building on FIG. 3B;

[0010] FIG. 4A 1s an 1illustration of a flow diagram of an example training method for a
fault prediction system:;

[0011] FIG. 4B 1s an illustration of a flow diagram of an example fault predictor method;
[0012] FIG. 5 1s an 1llustration of diagrams of example outputs showing new seismic data;
[0013] FIG. 6A 1s an 1illustration of a flow diagram of an example method for predicting
subterranean faults:

[0014] FIG. 6B 1s an 1llustration of a flow diagram of an example method, building on FIG.
6A, with a seismic attribute replacement;

[0015] FIG. 7 1s an 1llustration of a flow diagram of an example method for training a fault
predictor system; and

[0016] FIG. 8 1s an 1illustration of a block diagram of an example fault predictor system.
DETAILED DESCRIPTION

[0017] When developing and planning a well system, it 1s beneficial to understand the nature,
composition, and fault structure of the subterranecan formations through which operations will be
conducted, such as drilling operations, hydraulic fracturing, and other well system operations.
One set of factors used 1n the analyzation of the well system can be the faults and fault patterns
of the subterranean formations. Understanding where the faults are located, positioned, and
orientated can aide 1n determining an operation plan and allow for the 1dentification of potential
subterranean hazards.

[0018] Conventional fault prediction techniques may result in fault predictions that have less
accuracy than specified for the well system. Different levels of signal to noise ratio and
frequency bands can degrade the prediction accuracy. Fault planes may not be correctly
identified thereby leading to a less optimal operation plan. Some conventional fault prediction
techniques may be time-consuming where the time to analyze the collected data can introduce
time delays 1n implementing the operation plan, thereby increasing operational costs. In

addition, conventional techniques may not i1ncorporate sufficient data to meet an accuracy
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threshold. In some conventional deep learning neural network techniques, 1mage segmentation
and feature extraction may be relied on rather than the use of seismic attribute derivations.
Improving the accuracy of the fault predictions can lower costs through optimizing operations as
well as avoiding subterranean hazards that could increase time and costs, such as causing
additional maintenance on drilling assemblies.

[0019] This disclosure presents a fault prediction technique using a neural network, such as a
deep learning neural network (DNN), that uses seismic data collected from tools and seismic
attributes derived from the seismic data. The technique can result 1n faster fault predictions, such
that they can be run in near real-time at a well system job site, and uses seismic attributes to
increase the fault prediction accuracy. The seismic attributes can provide more granular detail
on the seismic data to improve the analyzation results from the DNN.

[0020] Seismic attributes, which are data parameters extracted or derived from seismic data, are
used to analyze and enhance the quality of geological or geophysical interpretations. The set of
seismic attributes can be derived from the seismic amplitude data by analyzing the data in a
moving one-dimensional, two dimensional, or three-dimensional window. The data analyzation
can, for example, utilize one or more of a frequency parameter, a density parameter, an
amplitude parameter, a thermal parameter, a radioactivity parameter, an absorption parameter,
and other subterranean formation parameters. A DNN can be trained utilizing the seismic data
and the seismic attributes, for example, using multi-channels for a deep learning convolutional
neural network (CNN). The seismic attributes can be considered as a channel to feed to the input
layer of the DNN,

[0021] During training, seismic attributes can serve as a guide to provide finer structure
information where the original seismic data can present such information as noise. Seismic
attributes can be assigned an importance coefficient to assist in weighting the value of the
respective seismic attribute. In addition, each importance coefficient can be correlated with a
standard deviation to provide additional information for the DNN training. The seismic
attributes can identify discontinuous structures and also represent the continuity of amplitude
events 1n order to provide additional structural information.

[0022] The utilization of the seismic attributes can improve the 1dentification of fault planes and
reduce false-positive predictions compared to previous conventional techniques. Seismic

attributes can be pre-calculated from the seismic data or calculated during the training process of
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the DNN. A sub-set of seismic attributes can be selected and used when training or executing
the fault prediction process. The selection of seismic attributes for the sub-set can represent edge
detection data, as well as distinguish sub-surface continuity and dip information. For example, a
sub-set of seismic attributes can include discontinuity, relative amplitude change in x-axis and y-
ax1s orientations, sweet, curvature, and other types of seismic attributes.

[0023] Turning now to the figures, FIG. 1 1s an illustration of a diagram of an example well
system 100, for example, a drilling system, an extraction system, a production system, a wireline
system with a pump, and other hydrocarbon well systems, developed using seismic data fault
predictions. Well system 100 includes a derrick 105, a well site controller 107, and a computing
system 108. Well site controller 107 includes a processor and a memory and 1s configured to
direct operation of well system 100. Derrick 103 1s located at a surface 106.

[0024] Extending below derrick 105 i1s a borehole 110 with a drill string 115 inserted within
borehole 110. Located at the bottom of drill string 115 are downhole tools 120. Downhole tools
120 can include various downhole tools and bottom hole assemblies (BHA), such as a drilling bit
122 and seismic telemetry devices. Other components of downhole tools 120 can be present,
such as a local power supply (e.g., a generator), batteries, capacitors, telemetry systems, as well
as a transceiver and a control system. Borehole 110 1s surrounded by subterranean formation
150.

[0025] Well site controller 107, or a computing system 108 communicatively coupled to well
site controller 107, can be utilized to communicate with downhole tools 120, such as sending and
receiving seismic data correlated to subterranean formation 150, telemetry, data, instructions,
and other information. Computing system 108 can be proximate well site controller 107 or be a
distance away, such as in a cloud environment, a data center, a lab, or a corporate office.
Computing system 108 can be a laptop, smartphone, PDA, server, desktop computer, cloud
computing system, and other computing systems that are capable to perform the process and
methods described herein. Well site operators, engineers, and other personnel can also send and
receive the seismic data, telemetry, data, instructions, and other information by various
conventional means with computing system 108 or well site controller 107.

[0026] The seismic data collected by downhole tools 120 can be used as the seismic data inputs
into the fault prediction system. Seismic data can be received from other sources as well, such as

other sensors located within borehole 110 or at surface 106, a database, cloud storage, server,
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and other data storage devices. The fault prediction system can be executed on computing
system 108, well site controller 107, or another computing system proximate well system 100 or
a distance from well system 100. The resulting fault predictions can be utilized to modify the
well operation plan and drilling plan for well system 100.

[0027] While FIG. 1 depicts an onshore operation, those skilled in the art will understand that
the disclosure 1s equally well suited for use in offshore operations, such as illustrated in FIG. 2.
Additionally, FIGS. 1 and 2 depict specific borehole configurations. Those skilled in the art will
also understand that the disclosure 1s equally well suited for use in boreholes having other
orientations including vertical boreholes, horizontal boreholes, slanted boreholes, multilateral
boreholes, and other borehole types.

[0028] FIG. 2 1s an 1illustration of a diagram of an example offshore well system 200 using
seismic data fault predictions, where a downhole tool 1s placed downhole 1n a borehole 210
below a body of water 240, such as an ocean or sea. Water 240 has a surface 244 and has a
bottom at a subterrancan surface 242. The downhole tool can be various tools, pumps,
assemblies, devices, sensors, and other downhole tools. For demonstration, an electric
submersible pump (ESP) assembly 220 1s shown as the downhole tool. Borehole 210 1s
surrounded by subterranean formation 245. ESP assembly 220 can also be used for onshore
operations. ESP assembly 220 includes a well controller 207 (for example, to act as a speed and
communications controller of ESP assembly 220), a motor 214, and a pump 224.

[0029] Well controller 207 can be placed 1n a cabinet 206 1nside a control room 204 on an
offshore platform 205, such as an oil rig. Well controller 207 1s configured to adjust the
operations of motor 214 to improve well productivity. In the illustrated embodiment, motor 214
1S a two-pole, three-phase squirrel cage induction motor that operates to turn pump 224. Motor
214 1s located near the bottom of ESP assembly 220, just above downhole sensors within
borehole 210. A power cable 230 extends from well controller 207 to motor 214.

[0030] In some embodiments, pump 224 can be a horizontal surface pump, a progressive
cavity pump or an electric submersible progressive cavity pump. A drill riser 215 can separate
ESP assembly 220 from water 240 and subterranean formation 245. Perforations in drill riser
215 can allow the fluid of interest from subterranean formation 245 to enter borehole 210.

[0031] Fault predictions can be utilized to guide future operations of offshore well system

200, such as faults within subterrancan formation 245. In some aspects, ESP assembly 220 can
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include seismic tools to collect seismic data, which can then be communicated to well controller
207.  Well controller 207, or another communicatively coupled computing system, can
implement the fault prediction system as described herein to generate new seismic data that can
be used as input 1nto the well operation plan.

[0032] FIG. 3A 1s an 1illustration of a listing of an example seismic attribute list 301.
Seismic attribute list 301 1s a partial listing of available seismic attributes. Additional seismic
attributes can be added to the process such that they can be trained within the deep learning
model for potential use 1n future analysis processing.  Seismic attribute list 301 has an
identification 310 for each seismic attribute that 1s tracked within the deep learning model, with a
seismic attribute description 315 associated with each i1dentification 310.

[0033] FIG. 3B 1s an 1llustration of a chart of an example importance coefficient graph 302
using the seismic attribute list of FIG. 3A. Importance coefficient graph 302 can be generated
using various decision tree algorithms to compute the importance of selected seismic attributes
as well as a standard deviation parameter. For example, the decision tree algorithms can be a
random forest classifier, a decision tree classifier, a gradient boosting classifier, or an extra trees
classifier. Importance coefficient graph 302 includes an x-axis 335 that list identification 310 for
each seismic attribute. Y-axis 336 1s the importance coefficient for the identified seismic
attributes. For this example, the seismic attributes have been ordered by their respective
importance coefficients, in descending order. Implemented fault prediction systems can organize
data in various ways that 1s convenient for the specific input layer of the DNN being utilized.
[0034] Plot area of importance coefficient graph 302 shows the selected seismic attributes
welghted by the importance coefficient. For example, seismic attribute 25 1s shown as bar 340.
Seismic attribute 25 1s also demonstrating an example standard deviation 345 shown as a black
line. Importance coefficient graph 302 1s for visual demonstration; graphing the data 1s not
necessary for implementing the processes described herein.

[0035] In this example, the first five seismic attributes have been selected as a sub-set of
seismic attributes 338. Sub-set of seismic attributes 338 can be the seismic attributes used within
the training process and fault prediction process. The respective processes can use 1ts own sub-
set of seismic attributes. For example, the training process can use a larger sub-set of seismic
attributes (such as eight, ten, or another amount) to improve the training of the trained model,

e.g., trained DNN model, while the fault prediction process, e.g., tault predictor DNN, can use a

—6—



WO 2021/126284 PCT/US2020/014976

smaller sub-set of seismic attributes (such as four, five, or another amount) to reduce
computational resources and time. A computational time limit parameter or a user input can be
used to determine the number of seismic attributes to use in the sub-set. The selection of the
seismic attributes for the sub-set can utilize various criteria, with the criteria of the highest
welghted 1mportance coefficients shown as selected 1n this example. The processes can use
various numbers of seismic attributes, where the increase 1n computing cost of additional seismic
attributes being a primary factor in determining the number to use. In some aspects, some or all
of the seismic attributes can be utilized.

[0036] FIG. 3C 1s an 1illustration of representative data of an example seismic attribute
replacement 303, building on FIG. 3B. Seismic attribute replacement 303 has a representative
image block 350 showing an example subterranean formation fault that 1s represented by the
selected seismic attributes.

[0037] Image block 360 corresponds to seismic attribute 25 representing the discontinuity
dip. Image block 362 corresponds to seismic attribute 29 representing the negative curvature.
Image block 364 corresponds to seismic attribute 12 representing the relative amplitude change
in the y-axis direction. Image block 366 corresponds to seismic attribute 7 representing the
relative amplitude change i1n the x-axis direction. Image block 368 corresponds to seismic
attribute 4 representing the positive curvature. The seismic attributes 25, 29, 12, 7, and 4
correspond to the list of attributes 1n FIG. 3A.

[0038] Through analysis, seismic attribute 12 and seismic attribute 7 can be determined to
be characteristically similar, e.g., having a similar seismic attribute characteristic. For example,
characteristically similar can be that the seismic attributes represent a similar attribute (1) 1n an
orientation, such as iline / crossline or X - Y - Z axes, (2) 1n a formation characteristic, such as
dip, discontinuity, curvature, or surface, (3) in a mathematical representation, such as amplitude,
frequency, or root mean squares, or (4) in other similar seismic attribute characteristics. The
process would benefit from replacing these seismic attributes with a single substantially
characteristically similar seismic attribute as opposed to maintaining separate importance
coefficient weightings. Image block 370 corresponds to seismic attribute 1 of FIG. 3A
representing the relative amplitude change that 1s not sub-divided by an axis orientation. Seismic
attribute 12 and seismic attribute 7 can be replaced by a single seismic attribute 1 thereby

improving the weighting imposed by the importance coefficients. When the balance of
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importance coefficients have been improved, the accuracy of the resulting fault predictions can
also be improved.

[0039] FIG. 4A 1s an illustration of a flow diagram of an example training method 401 for a
fault prediction system. Training method 401 can be used to train a neural network, such as a
DNN, to perform fault probability analysis. Training method 401 can be performed, for
example, on a fault predictor system 800 as illustrated 1in FIG. 8. Training method 401 starts at a
step 410 where seismic data can be collected. The training process can use one or more seismic
data sets. The seismic data can be received from various sources, such as a well system, a data
storage system, server, cloud storage, data center, and other sources. A separate set of seismic
attributes can be derived for each of the sets of seismic data.

[0040] The seismic data and corresponding seismic attributes are then standardized and
normalized in a step 420. The normalization algorithm can utilize various baselines, with an
inclusive decimal range of zero to one or negative one to positive one most commonly utilized.
The normalized data inputs can then be standardized for the input layer used for the training
DNN. In a step 425, the input data can be transtormed 1nto a four-dimensional tensor, e.g., 4D
cube, or other type of multi-channel data depending on the type of DNN utilized.

[0041] In a step 430, the input data can be transformed 1nto a series of three-dimensional
tensors that can be processed by the training DNN. In addition, in a step 435, fault labels can be
selected and applied to the transformed data within the training DNN. In a step 440, the trained
model can be stored and enabled for use for fault probability analysis by a fault predictor DNN.
[0042] FIG. 4B 1s an 1illustration of a flow diagram of an example fault predictor method
402. Fault predictor method 402 can be used to analyze seismic data to generate fault
probabilities and a subsequent fault prediction utilizing the fault probabilities. Fault predictor
method 402 can be performed, for example, on fault predictor system 800.

[0043] Fault predictor method 402 starts at a step 460 where seismic data 1s received. In a
step 465, a set of seismic attributes can be derived from the seismic data. In some aspects, the
seismic attributes can be normalized, such as to an inclusive decimal range of 0.0 to 1.0 or -1.0 to
1.0. In some aspects, an importance coefficient can be determined for the seismic attributes.
The importance coefficient can be determined using various algorithms, such as random forest.
In addition, a standard deviation parameter can be determined for each importance coetficient.

In some aspects, a sub-set of seismic attributes can be selected, such as selecting the four or five
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seismic attributes with the numerically highest importance coefficients. The i1mportance
coefficients can be utilized, along with the standard deviations, by the fault predictor DNN as
corresponding input parameters and weighting factors to the respective seismic attribute input.
In some aspects, an analysis can be performed where two or more seismic attributes can be
replaced by a different seismic attribute. The replacement can occur when the analysis
determines that accuracy can be improved when the replaced seismic attributes are
characteristically similar and therefore can adversely atfect the importance coefficient weighting.
The replacement seismic attribute 1s substantially characteristically similar to the seismic
attributes being replaced.

[0044 ] In a step 440, the seismic data and the set of seismic attributes, or a sub-set of
seismic attributes, 1s processed by the trained model. Using conventional DNN processing, the
trained model can determine parameterized results. The parameterized results can be used to
calculate a set of fault probabilities of the subterrancan formation. In a step 480, the fault
probabilities can be transformed into predicted new seismic data representing the fault
predictions of the system. The new seismic data can then be utilized by a user or other
computing systems as input for other processes and decisions, such as being used to modify an
operational plan of a well system.

[0045] FIG. 5 1s an 1llustration of diagrams of example outputs showing new seismic data
500. New seismic data S00 demonstrates a comparison of an output from a conventional fault
model prediction system and an output from the fault model prediction system as described
herein. New seismic data 500 demonstrates that the herein described fault prediction system can
produce more accurate fault models.

[0046] Image 510 is a predicted new seismic data output by a conventional fault model
prediction system. Image 520 1s a predicted new seismic data output by the fault prediction
system as described herein. Image 510 1s the same subterranean formation as Image 520. Circle
530-a, circle 532-a, circle 534-a, and circle 536-a highlight regions of the seismic data,
represented as an 1image, where a fault line 1s not present within the circle highlight. Circle 530-
b, circle 532-b, circle 534-b, and circle 536-b highlight respectively same regions of the seismic
data — correlating to respective “-a’ circles, where a fault line 1s present within the circle
highlight. Image 520 represents more accurate fault predictions for the same subterranean

formation.
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[0047] FIG. 6A 1s an 1llustration of a flow diagram of an example method 601 for predicting
subterranean faults. Method 601 can be implemented using a computing system, such as fault
predictor system 800. Method 601 starts at a step 610 and proceeds to a step 620. In step 620
the seismic data can be received, such as from a computing source, a data storage, or other
system capable of collecting, storing, and communicating seismic data. In some aspects, seismic
data can be received from a seismic sensor located at a well system.

[0043] In a step 630 a set of seismic attributes can be derived from the seismic data. The
number of seismic attributes in the set can vary, such as by the type of seismic data received.
The number of seismic attributes can also be limited to limit the impact on the computing
resources available to perform the processes of predicting subterranean faults and to reduce the
computational time. The number of seismic attributes can be determined by user input, by
default value, or through an analysis of a computational time limit parameter with the available
computing resources. In a step 650 the seismic data and seismic attributes are analyzed to
determine parameterized results. The seismic data and seismic attributes can be input into a
trained DNN that receives the seismic data and seismic attributes and performs the analysis.
Depending on the input layer structure of the DNN, the seismic data and seismic attributes can
be transformed 1nto varying tensors to satisty the DNN.

[0049] In a step 660, one or more fault probabilities can be calculated using the
parameterized results from the trained model. The fault probabilities can be output for further
analysis. The method 601 ends at a step 680.

[0050] FIG. 6B 1s an 1llustration of a flow diagram of an example method 602, building on
FIG. 6A, with a seismic attribute replacement. Method 602 can be implemented using a
computing system, such as fault predictor system 800. The steps of method 601 are shown using
dashed outlined boxes and can be performed as described with respect to method 601 unless
otherwise denoted below. The new steps of method 602 are shown in solid outlined boxes.
Method 602 starts at step 610 and proceeds through to step 630. Step 630 can be expanded with
a step 632 and a step 636. Step 632 and step 636 can be performed in various orders, and in
some aspects, step 632 or step 636 can be bypassed.

[0051] Step 632 can normalize one or more of the seismic attributes. The normalization can

utilize various baseline ranges, for example, 0.0 to 1.0, -1.0 to 1.0, and other baseline ranges.
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The normalization process can improve the weighting accuracy given to the seismic attributes.
From step 632, method 602 can proceed to step 636 or to step 650.

[0052] Step 636 can compute the importance coefficient for the seismic attributes. The
importance coefficient can be determined using various decision tree algorithms, such as random
forest. The importance coefficient can be utilized to rank the relative weights of the seismic
attributes. In some aspects, a standard deviation parameter can be computed for each seismic
attribute. The importance coefficient and standard deviation are part of the seismic attribute data
that can be used as 1nputs to a fault predictor DNN, such as fault predictor DNN 840 1n FIG. 8.
From step 636, method 602 can proceed to step 650 or proceed to a step 640.

[0053] In step 640, a sub-set of the seismic attributes can be selected. The sub-set of
seismic attributes can reduce the computer resources and computational time by reducing the
amount of data to be processed. The number of seismic attributes selected can be from one to
the total number of available seismic attributes, where a typical range 1s three to six seismic
attributes.  Additional seismic attributes can be utilized, usually with an increase 1n
computational cost and time. Typically, the sub-set of seismic attributes can be populated by
selecting the seismic attributes with the largest importance coefficient, e.g., weighting, though
other selection criteria can be utilized. Method 602 can proceed to step 6350 or to a step 644 from
step 640.

[0054] In step 644, a replacement of seismic attributes can be performed. In the sub-set of
seismic attributes, there can be two or more attributes that represent a characteristically similar
attribute and have an approximately equal, or near equal, importance coetficient. The multiple
similar seismic attributes can unfairly influence the importance coefficient weighting within the
DNN processing. To improve the DNN accuracy, the multiple seismic attributes can be replaced
by a single seismic attribute that presents a substantially characteristically similar attribute. This
can provide a more accurate weighting when processed through the DNN. For example, a
seismic attribute that can be determined in an inline orientation and a crossline orientation can be
replaced by a single similar seismic attribute that incorporates the inline and crossline
orientations. From step 644 method 602 proceeds to step 650 and step 660.

[0055] From step 660, method 602 proceeds to a step 665. In step 665, the fault
probabilities are transtormed into a fault prediction, which can be represented by a predicted new

seismic data, such as a three-dimensional image of the subterrancan formation. The predicted
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new seismic data can be output for further use and analysis, such as by a well system operation
plan. Method 602 ends at step 680.

[0056] FIG. 7 1s an 1llustration of a flow diagram of an example method 700 for training a
fault predictor system. Method 700 can be implemented using a computing system, such as fault
predictor system 800. Method 700 starts at a step 710 and proceeds to a step 720. In step 720,
one or more sets of seismic data can be received. The seismic data can be received from a well
system, such as a well system controller, a data center, cloud storage, server, and other data
storage locations. The received seismic data can be for the same or varying subterranean
formations.

[0057] In a step 730, a set of seismic attributes, for each set of seismic data, can be derived.
In a step 732, the seismic attributes can be normalized using a determined baseline range. In a
step 736, an importance coetficient and a standard deviation parameter can be computed for the
selected seismic attributes. In some aspects, the set of seismic attributes used for the sets of
seismic data can be reduced, such as selecting a sub-set of seismic attributes that have the largest
importance coefficients. Random forest, decision tree, gradient boosting, and extra trees are
types of classifiers that can be used to determine and rank the importance coefficients. Other
selection techniques can be utilized as well, such as selecting seismic attributes that are pertinent
for the type of mineral or rock which makes up the subterranean formation or an analysis by a
user. The sub-set of seismic attributes does not need to match the sub-set of seismic attributes
utilized 1in a subsequent execution of the fault prediction system, such as method 602. By
reducing the number of seismic attributes used as input for training, the performance of the
training process can be improved while reducing the computing resources.

[0058] In a step 750, the sets of seismic data and corresponding sets of seismic attributes (or
the corresponding sub-sets of seismic attributes, if determined), are transformed into a tensor
form aligning with the input layer of the training DNN, and used as the data input for the model.
In a step 760, the fault prediction model 1s trained by applying synthetic fault labels to the input
data. The trained model can then be stored and enabled for later use as a trained DNN. In some
aspects, the training DNN can be the same as the fault predictor DNN. Method 700 ends at a
step 780.

[0059] FIG. 8 1s an 1llustration of a block diagram of an example fault predictor system 800.

Fault predictor system 800 can be used to train a DNN and to perform analysis of seismic data to
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generate a predicted new seismic data that incorporates fault predictions. Fault predictor system
800 includes a predictor system 810, a training system 813, and a trained DNN model 817.
[0060] Predictor system 810 and training system 815 can be the same or separate systems,
and each can be a software application, a hardware system or circuitry, or various combinations
thereof. For example, predictor system 810 can be performed on a central processing unit
(CPU), graphics processing unit (GPU), or other processing unit. Training system 815 can be
performed on the same or different processing unit as predictor system 810. Similarly, predictor
system 810 and training system 8135 can be part of the same software application, can share some
software features and functions, or be separate software applications.

[0061 ] Predictor system 810 includes a seismic data receiver 820, a seismic attribute deriver
830, and a fault predictor DNN 840. Seismic data receiver 820 1s capable of receiving seismic
data from one or more sources, for example, a well site controller, a data center, cloud
environment, server, tablet, smartphone, and other devices capable of providing seismic data.
The seismic data correlates to a subterranecan formation. The seismic data can be communicated
to seismic attribute deriver 830. Seismic attribute deriver 830 can derive one or more seismic
attributes from the seismic data, normalize the seismic attributes, determine i1mportance
coefficients and standard deviation parameters for the seismic attributes, select a sub-set of
seismic attributes using a specified selection parameter, and replace two or more seismic
attributes with a single seismic attribute, where the seismic attributes are substantially
characteristically similar.

[0062] Fault predictor DNN 840 can receive the seismic data and the adjusted seismic
attributes (or a sub-set thereof), and using trained DNN model 817, can generate parameterized
results representing fault probabilities. Predictor system 810 can additionally transform the fault
probabilities into fault predictions that can be represented as predicted new seismic data, such as
an 1mage or a set of data. The predicted new seismic data can be output to another application,
system, device, computing system, communication channel, intranet, internet, and other output
destinations for further use, such as to be analyzed or used as inputs into an operation plan.
[0063] Training system 815 includes a training seismic data receiver 850, a training seismic
attribute deriver 860, and a training DNN 870. Training seismic data receiver 850 1s capable of
receiving one or more sets of seismic data from one or more sources, for example, a well site

controller, a data center, cloud environment, server, tablet, smartphone, and other devices
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capable of providing seismic data. The set of seismic data can represent the same or different
subterranean formations. The seismic data can be communicated to training seismic attribute
deriver 860. Training seismic attribute deriver 860 can derive one or more seismic attributes
from each of the sets of seismic data, normalize the seismic attributes, determine importance
coefficients and standard deviation parameters for each seismic attribute, select a sub-set of
seismic attributes using a specitied selection parameter for each set of seismic data, and replace
two or more seismic attributes with a single seismic attribute.

[0064 ] Training DNN 870 can receive the sets of seismic data and the correlated adjusted
seismic attributes, and using trained DNN model 817, can assign fault labels to the input data
clements, thereby training trained DNN model 817. In some aspects, the assignment of fault
labels 1s performed by training DNN 870. In other aspects, the assignment of fault labels 1s
performed by a user.

[0065] Seismic data receiver 820, seismic attribute deriver 830, fault predictor DNN 840,
training seismic data receiver 8350, training seismic attribute deriver 860, and training DNN 870
can be implemented as one or more software applications, functions, software libraries, dynamic
link libraries, modules, dedicated circuitry, or various combinations thereof. These components
can share executable code as well. In some aspects, seismic data receiver 820 and training
seismic data receiver 850 can be the same seismic data receiver. In some aspects, seismic
attribute deriver 830 and training seismic attribute deriver 860 can be the same seismic attribute
deriver. In some aspects, fault predictor DNN 840 and training DNN 870 can be the same DNN.
In some aspects, predictor system 810 and training system 815 can be the same system. Trained
DNN model 817 can be various data storage formats and devices, for example, files or databases
stored on a server, data center, cloud storage, other data storage mediums, and combinations
thereof.

[0066] A portion of the above-described apparatus, systems or methods may be embodied
in or performed by various analog or digital data processors, wherein the processors are
programmed or store executable programs of sequences of software instructions to perform one
or more of the steps of the methods. A processor may be, for example, a programmable logic
device such as a programmable array logic (PAL), a generic array logic (GAL), a field
programmable gate arrays (FPGA), or another type of computer processing device (CPD). The

software 1nstructions of such programs may represent algorithms and be encoded in machine-
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executable form on non-transitory digital data storage media, e.g., magnetic or optical disks,
random-access memory (RAM), magnetic hard disks, flash memories, and/or read-only memory
(ROM), to enable various types of digital data processors or computers to perform one, multiple
or all of the steps of one or more of the above-described methods, or functions, systems or
apparatuses described herein.

[0067] Portions of disclosed examples or embodiments may relate to computer storage
products with a non-transitory computer-readable medium that have program code thereon for
performing various computer-implemented operations that embody a part of an apparatus, device
or carry out the steps of a method set forth herein. Non-transitory used herein refers to all
computer-readable media except for transitory, propagating signals. Examples of non-transitory
computer-readable media include, but are not limited to: magnetic media such as hard disks,
floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media
such as floppy disks; and hardware devices that are specially configured to store and execute
program code, such as ROM and RAM devices. Examples of program code include both
machine code, such as produced by a compiler, and files containing higher level code that may
be executed by the computer using an interpreter.

[0063] In interpreting the disclosure, all terms should be interpreted in the broadest
possible manner consistent with the context. In particular, the terms "comprises” and
"comprising” should be interpreted as referring to elements, components, or steps 1n a non-
exclusive manner, indicating that the referenced elements, components, or steps may be present,
or utilized, or combined with other elements, components, or steps that are not expressly
referenced.

[0069] Those skilled in the art to which this application relates will appreciate that other
and further additions, deletions, substitutions and modifications may be made to the described
embodiments. It 1s also to be understood that the terminology used herein 1s for the purpose of
describing particular embodiments only, and 1s not intended to be limiting, since the scope of the
present disclosure will be limited only by the claims. Unless defined otherwise, all technical and
scientific terms used herein have the same meaning as commonly understood by one of ordinary
skill 1n the art to which this disclosure belongs. Although any methods and materials similar or
equivalent to those described herein can also be used 1n the practice or testing of the present

disclosure, a limited number of the exemplary methods and materials are described herein.
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[0070]

A.

Aspects disclosed herein includes:
A method to predict subterrancan formation faults including: (1) receiving seismic data
correlating to a subterranean formation, (2) deriving a set of seismic attributes from the
seismic data, (3) determining parameterized results by analyzing the seismic data and
the set of seismic attributes using a deep learning neural network (DNN), wherein the
DNN has been trained using previous seismic data and previous seismic attributes, and
(4) calculating one or more fault probabilities utilizing the parameterized results.
A method to train a fault predictor DNN including: (1) receiving one or more sets of
seismic data correlating to one or more respective subterranean formations, wherein the
subterrancan formations are part of one or more well systems, (2) deriving a set of
seismic attributes for each of the one or more sets of seismic data, (3) normalizing
seismic attributes 1n the set of seismic attributes, (4) generating multi-channel data,
wherein the multi-channel data 1s derived from the one or more sets of seismic data and
respective sets of seismic attributes, and (5) training the DNN by analyzing the multi-
channel data and applying fault labels.
A system to predict faults including: (1) seismic data receiver, capable of receiving
seismic data from one or more sources, wherein the seismic data correlates to a
subterranean formation, (2) a seismic attribute deriver, capable to derive a set of seismic
attributes from each of the received seismic data, and (3) a fault predictor DNN, capable
of analyzing the received seismic data and each of the sets of seismic attributes utilizing
a trained DNN model, and providing parameterized results representing fault
probabilities.
A computer program product having a series of operating instructions stored on a non-
transitory computer-readable medium that directs a data processing apparatus when
executed thereby to perform operations to predict subterrancan formation faults, the
operations including: (1) receiving seismic data correlating to a subterranean formation,
(2) deriving a set of seismic attributes from the seismic data, (3) determining
parameterized results by analyzing the seismic data and the set of seismic attributes
using a DNN, wherein the DNN has been trained using previous seismic data and
previous seismic attributes, and (4) computing one or more fault probabilities utilizing

the parameterized results.
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[0071] Each of aspects A, B and C can have one or more of the following additional
clements in combination. Element 1: transforming the one or more fault probabilities as a
predicted new seismic data. Element 2: utilizing the predicted new seismic data to modily an
operational plan of a well system. Element 3: wherein the deriving utilizes one or more of a
frequency parameter, a density parameter, an amplitude parameter, a thermal parameter, a
radioactivity parameter, and an absorption parameter. Element 4: normalizing each seismic
attribute 1n the set of seismic attributes prior to determining the parameterized results. Element
J: selecting a sub-set of seismic attributes from the set of seismic attributes, wherein determining
the parameterized results utilizes the sub-set of seismic attributes as the set of seismic attributes.
Element 6: wherein a number of seismic attributes 1n the sub-set of seismic attributes 1s
determined by a user input or a computational time limit parameter. Element 7: wherein the sub-
set of seismic attributes are selected using one of a random forest classifier, a decision tree
classifier, a gradient boosting classifier, or an extra trees classifier. Element 8: replacing two or
more characteristically similar seismic attributes 1n the sub-set of seismic attributes with a
substantially characteristically similar non-selected seismic attribute. Element 9: wherein a user
review 1s utilized for replacing the two or more characteristically similar seismic attributes.
Element 10: computing an importance coefficient for seismic attributes in the set of seismic
attributes, wherein the importance coetficient 1s utilized by the DNN. Element 11: computing a
standard deviation parameter for each respective importance coetficient, wherein the standard
deviation parameter 1s utilized by the DNN. Element 12: storing the trained DNN. Element 13:
enabling the trained DNN for use. Element 14: wherein the fault labels are assigned utilizing
user input. Element 15: computing an importance coetficient for each seismic attribute 1n each
set of seismic attributes, wherein the importance coefficient 1s utilized for training the DNN.
Element 16: wherein the seismic attribute deriver 1s further capable of performing data
normalization of seismic attributes. Element 17: wherein the seismic attribute deriver 1s further
capable of selecting a sub-set of seismic attributes from each of the sets of seismic attributes,
where the sub-set of seismic attributes 1s used by the fault predictor DNN. Element 18: wherein
the seismic attribute deriver 1s further capable of replacing, utilizing a seismic attribute
characteristic, two or more seismic attributes with a previously non-selected seismic attribute.
Element 19: wherein the seismic attribute deriver 1s further capable to compute an importance

coelficient and a standard deviation to seismic attributes, where the importance coefficient and
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the standard deviation are utilized by the fault predictor DNN. Element 20: a predictor system,
capable of receiving and transforming the fault probabilities and outputting new seismic data
representing predicted faults within the subterranean formation, wherein the new seismic data 1s
utilized by a well system operation plan. Element 21: wherein the fault predictor DNN 1s a
convolutional neural network. Element 22: a training seismic data receiver, capable of receiving
one or more sets of seismic data from one or more sources, wherein the one or more sets of
seismic data correlates to one or more subterrancan locations. Element 23: a training seismic
attribute deriver, capable of deriving a set of seismic attributes from each of the one or more sets
of seismic data received from the training seismic data receiver, and normalizing seismic
attributes 1n the sets of seismic attributes. Element 24: a training DNN, capable of analyzing the
one or more sets of seismic data and the one or more derived sets of seismic attributes, and
assign one or more fault labels. Element 25: wherein the training seismic attribute deriver 1s
further capable of determining an importance coetficient and a standard deviation for the seismic

attributes. Element 26: wherein the training DNN 1s the fault predictor DNN.
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WHAT IS CLAIMED IS:

1.

A method to predict subterranean formation faults, comprising:

receiving seismic data correlating to a subterranean formation;

deriving a set of seismic attributes from the seismic data;

determining parameterized results by analyzing the seismic data and the set of
seismic attributes using a deep learning neural network (DNN), wherein the DNN has been
trained using previous seismic data and previous seismic attributes; and

calculating one or more fault probabilitiecs of the subterranean formation
utilizing the parameterized results.
The method as recited in Claim 1, further comprising:

normalizing each seismic attribute 1n the set of seismic attributes prior to
determining the parameterized results.
The method as recited in Claim 1, further comprising:

transforming the one or more fault probabilities as a predicted new seismic data
and utilizing the predicted new seismic data to modify an operational plan of a well system.
The method as recited in Claim 1, further comprising:

computing an importance coefficient for each seismic attribute i1n the set of
seismic attributes, wherein the importance coefficient 1s utilized by the DNN.
The method as recited 1in Claim 4, further comprising:

computing a standard deviation parameter for each respective importance
coeflicient, wherein the standard deviation parameter 1s utilized by the DNN.
The method as recited in anyone of Claims 1 to 4, further comprising:

selecting a sub-set of seismic attributes from the set of seismic attributes,
wherein determining the parameterized results utilizes the sub-set of seismic attributes as the
set of seismic attributes.
The method as recited in Claim 6, further comprising:

replacing two or more characteristically similar seismic attributes in the sub-set
of seismic attributes with a substantially characteristically similar non-selected seismic
attribute.
The method as recited 1n Claim 7, wherein a user review 1s utilized for replacing the two or

more characteristically similar seismic attributes.
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The method as recited in Claim 6, wherein a number of seismic attributes 1in the sub-set of
seismic attributes 1s determined by a user input or a computational time limit parameter.
The method as recited in Claim 6, wherein the sub-set of seismic attributes 1s selected using
one of a random forest classifier, a decision tree classifier, a gradient boosting classifier, or
an extra trees classifier.
The method as recited in anyone of Claims 1 to 4, wherein the deriving the set of seismic
attributes utilizes one or more of a frequency parameter, a density parameter, an amplitude
parameter, a thermal parameter, a radioactivity parameter, and an absorption parameter.
A method to train a fault predictor deep learning neural network (DNN), comprising:

receiving one or more sets of seismic data correlating to one or more respective
subterranean formations, wherein the subterranean formations are part of one or more well
systems;

deriving a set of seismic attributes for each of the one or more sets of seismic
data:

normalizing seismic attributes 1n the set of seismic attributes;

generating multi-channel data, wherein the multi-channel data 1s derived from
the one or more sets of seismic data and respective sets of seismic attributes; and

training the DNN by analyzing the multi-channel data and applying fault labels.
The method as recited 1in Claim 12, further comprising:

computing an importance coefficient for seismic attributes in each set of seismic
attributes, wherein the importance coefficient 1s utilized for training the DNN.
The method as recited in anyone of Claims 12 to 13, further comprising:

storing the trained DNN; and

enabling the trained DNN for use.
The method as recited in anyone of Claims 12 to 13, wherein the fault labels are assigned
utilizing user 1nput.
A system to predict faults, comprising:

a seismic data receiver, capable of receiving seismic data from one or more
sources, wherein the seismic data correlates to a subterranean formation;

a seismic attribute deriver, capable to derive a set of seismic attributes from each

of the received seismic data; and
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a fault predictor deep learning neural network (DNN), capable of analyzing the
received seismic data and each of the sets of seismic attributes utilizing a trained DNN
model, and providing parameterized results representing fault probabilities.

The system as recited in Claim 16, further comprising:

a predictor system, capable of receiving and transtorming the fault probabilities
and outputting new seismic data representing predicted faults within the subterranean
formation, wherein the new seismic data 1s utilized by a well system operation plan.

The system as recited in Claim 16, further comprising:

a training seismic data receiver, capable of receiving one or more sets of
seismic data from one or more sources, wherein the one or more sets of seismic data
correlates to one or more subterranean locations:

a training seismic attribute deriver, capable of deriving a set of seismic attributes
from each of the one or more sets of seismic data received from the training seismic data
recerver, and normalizing seismic attributes in the sets of seismic attributes; and

a training DNN, capable of analyzing the one or more sets of seismic data and the
one or more derived sets of seismic attributes, and assign one or more fault labels.
The system as recited in Claim 18, wherein the training seismic attribute deriver 1s further
capable of determining an importance coefficient and a standard deviation for the seismic
attributes.
The system as recited in anyone of Claims 18 to 19, wherein the training DNN 1s the fault
predictor DNN.
The system as recited in anyone of Claims 16 to 18, wherein the seismic attribute deriver 1s
further capable of performing data normalization of seismic attributes and selecting a sub-set
of seismic attributes from each of the sets of seismic attributes, where the sub-set of seismic
attributes are used by the fault predictor DNN.
The system as recited 1in anyone of Claims 16 to 18, wherein the seismic attribute deriver 1s
further capable of replacing, utilizing a seismic attribute characteristic, two or more seismic
attributes with a previously non-selected seismic attribute.
The system as recited in anyone of Claims 16 to 18, wherein the seismic attribute deriver 1s

further capable to compute an importance coefficient and a standard deviation to seismic
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attributes, where the importance coefficient and the standard deviation are utilized by the
fault predictor DNN.
The system as recited 1in anyone of Claims 16 to 18, wherein the fault predictor DNN 1s a
convolutional neural network.
A computer program product having a series of operating instructions stored on a non-
transitory computer-readable medium that directs a data processing apparatus when
executed thereby to perform operations to predict subterranean formation faults, the
operations comprising:

receiving seismic data correlating to a subterranean formation;

deriving a set of seismic attributes from the seismic data;

determining parameterized results by analyzing the seismic data and the set of
seismic attributes using a deep learning neural network (DNN), wherein the DNN has been
trained using previous seismic data and previous seismic attributes; and

computing one or more fault probabilities of the subterranean formation utilizing

the parameterized results.
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310 315

 Attr_0 H SEISMIC AMPLITUDE
Aty 1 = | RELATIVE AMPLITUDE CHANGE
Atr 2 | = | REFLECTION STRENGTH

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

At 3 | = | COSINE OF PHASE
Ar 4 | = | MOST POSITIVE CURVATURE
At 5 | = | THIN BED INDICATOR
Atr 6 | = | AZIMUTH

Atr7 | =| RELATIVE AMPLITUDE CHANGE INX
Atr 8 | = | APPARENT POLARITY
At 9 | = | SWEETNESS
Atr_10 | = | ENERGY HALF-TIME
Atr 11 | = | ROOT MEAN SQUARE FREQUENCY

Aﬁi‘r 12 H RELATIVE AMPLITUDE CHANGEIN Y

At 13 | = | ARC LENGTH
Attr 14 | = | MEAN CURVATURE
Attr 15 | = | RESPONSE PHASE
Atr 16 | = | DULL SURFACE
Atr 17 | = | ROOT MEAN SQUARE AMPLITUDE |
A8 j=jop
Attr 19 | = | RESPONSE FREQUENCY
Attr 20 | = | RELATIVE ACOUSTIC IMPEDANCE |

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Atr 21 | = | RESPONSE AMPLITUDE
Atr 22 | = | INSTANTANEOUS FREQUENCY
At 23 | = | SEMI-SHINY SURFACE
Atir 24 | = | SHINY SURFACE
Atr 25 | = | DISCONTINUITY ALONG DIP
Attr 26 | = | AVERAGE FREQUENCY
At 27 | = | DISCONTINUITY
Atir 28 | = | INSTANTANEOUS PHASE
Atr 29 | = | MOST NEGATIVE CURVATURE

Attr 30 | = | SYNTHETIC FAULT LABEL
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