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Summary 

 

Seismic interpretation, particularly tasks such as salt body 

segmentation, has significantly advanced through deep 

learning methods. While traditional convolutional neural 

network (CNN)-based approaches have shown 

effectiveness, recent developments in Transformer 

architectures, notably Vision Transformers (ViTs), provide 

compelling new alternatives. This study introduces a novel 

weakly supervised Vision Transformer-based approach 

integrated with a long-term affinity similarity memory 

mechanism specifically designed for seismic interpretation. 

Initial ViT pre-training on synthetic seismic data establishes 

robust baseline geological object recognition. Subsequently, 

the affinity-based memory model training significantly 

enhances spatial continuity, crucial for accurately 

interpreting continuous geological structures across seismic 

volumes. Distinct from prior approaches, our method 

uniquely applies an affinity-based memory propagation 

technique specifically adapted for seismic inline 

propagation, substantially improving prediction continuity 

and considerably reducing manual annotation efforts. 

 

Introduction 

 

Seismic interpretation, particularly tasks like salt body 

segmentation, has significantly benefited from 

advancements in deep learning techniques. Convolutional 

Neural Networks (CNNs) have traditionally dominated this 

field due to their ability to rapidly and accurately identify 

geological features. For instance, Jiang et al. (2020) 

employed a multi-channel CNN architecture enhanced by 

saliency maps, which effectively highlight critical seismic 

features to improve neural network predictions. Similarly, 

Zhang et al. (2023) demonstrated interactive segmentation 

capabilities with a 3D U-Net model refined by a 3D graph-

cut, showing marked improvements in segmentation quality. 

 

Recently, however, Transformer-based architectures, 

inspired by successes in Large Language Models (LLMs), 

have gained attention across diverse scientific domains. In 

computer vision specifically, Vision Transformers (ViTs) 

introduced by Dosovitskiy et al. (2021) demonstrated that 

pure Transformer models without convolutional layers could 

effectively perform image classification tasks by directly 

processing image patches. Extending these architectures 

from 2D to 3D applications, Cheng and Schwing (2022) 

incorporated a long-term memory mechanism inspired by 

the Atkinson-Shiffrin model, which consolidates working 

memory into long-term memory, effectively managing long-

term spatial coherence without significant memory 

overhead. 

 

Inspired by these developments, this study integrates the 

vision transformer with a novel affinity-based long-term 

memory mechanism tailored specifically for interactive 

seismic interpretation tasks, including fault and salt 

segmentation. We leverage ViTs to process seismic sections 

as image-like inputs and incorporate positional encodings 

for geological feature recognition. A long-term memory 

module propagates initial manual annotations across 

multiple seismic sections, significantly enhancing spatial 

continuity and reducing the need for extensive manual 

labeling. Experimental results indicate this combined 

approach substantially reduces the generalization gap 

between training and testing datasets, providing a robust and 

interactive framework that improves interpretative accuracy 

and generalization for seismic datasets. 

 

Method 

 

Vision Transformers (ViTs) have emerged as strong 

competitors to Convolutional Neural Networks (CNNs), 

which have traditionally achieved state-of-the-art (SOTA) 

performance in various computer vision tasks, including 

image recognition. ViTs have demonstrated superior 

accuracy and computational efficiency compared to existing 

CNN-based models. Adapting ViTs from 2D image 

recognition to 3D seismic interpretation poses challenges 

currently under active exploration. A viable approach 

involves decomposing the 3D seismic volume into a 

sequence of 2D inline or crossline slices, further dividing 

each slice into small patches suitable for ViT processing 

(Figure 1). 

 

Cheng et al. (2021) introduced Space-Time Correspondence 

Networks (STCN) leveraging affinity-based propagation, 

utilizing L2 similarity instead of a dot product for robust 

correspondence mapping between video frames. Inspired by 

this methodology, we adapted the STCN architecture 

specifically for seismic data interpretation tasks. Our 

adaptation involves a two-step training strategy: initially, a 

ViT model is pre-trained as a baseline to recognize 

geological objects within individual seismic sections; 

subsequently, a propagator model is trained to effectively 

propagate predictions across multiple seismic sections, 

significantly improving spatial continuity and reducing 

annotation efforts.



 
 

Figure 1: An overall architecture to leverage vision transformer and long-term memory. 

 

The presented Vision Transformer (ViT)-based architecture 

for seismic interpretation leverages an affinity propagation 

mechanism to enhance geological feature detection. The 

workflow begins by inputting raw seismic images, which are 

divided into patches (Figure 2b) and processed through 

transformer layers to extract meaningful representations. 

The model then performs initial object segmentation, 

identifying key subsurface structures such as salt bodies, 

faults, and lithological variations. The affinity-based 

propagation module plays a crucial role by ensuring spatial 

coherence across multiple seismic sections, refining 

predictions and maintaining continuity between frames. The 

final output overlays the segmented geological features on 

the original seismic data, providing interpreters with a high-

resolution, automated interpretation that reduces manual 

effort and increases accuracy. 

 

This advanced architecture has significant applications in 

reservoir characterization and geophysical exploration. By 

accurately detecting salt bodies, the model helps identify 

potential hydrocarbon traps and pressure compartments, 

while its ability to map faults and fractures enhances 

structural analysis for reservoir connectivity and fluid 

migration studies. Additionally, lithology and facies 

classification benefit from ViT’s spatial feature learning, 

aiding in reservoir quality assessment. The model also 

improves seismic-well tie analysis, integrating well log data 

to estimate rock and fluid properties with greater precision. 

Beyond conventional oil and gas exploration, this 

technology proves valuable in carbon storage monitoring, 

where it tracks CO₂ plume migration, and in gas hydrate 

detection, mitigating drilling risks. By automating these 

critical tasks, this ViT-based approach enhances efficiency, 

reduces interpretation uncertainty, and unlocks new 

possibilities for subsurface resource management and 

geohazard assessment. 

 

Training workflows were designed in two steps. In the first 

step, we pre-train an encoder-decoder based ViT to initialize 

the model’s detection capability using synthetic seismic data:  

 

 
 

Figure 2: A patching scheme for ViT to work with seismic 

data. (a) original seismic data; (b) patching seismic data; (c) 

positional encodings implemented in ViT.  
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They help the model understand the relative positions of 

different patches in the seismic data.  

 

The second step is to train an affinity similarity memory 

model. According to Cheng et al. (2022), we consider the 

first inline as an orientation line. The manual scratch is 

passed into ViT as a prompt to help the ViT model to 

recognize the geological object (Figure 3a). It is also capable 

of detecting an object with multiple separated bodies, such 

as salt bodies in Figure 3c, shown in red, green and yellow. 

The memory model uses the current prediction as a template 

to pass predicted objects to the constitutive sections until it 

reaches the last line. The affinity matrix plays an important 

role in propagation. Cosine similarity calculates the angle 

between two vectors and is often viewed as a normalized dot 

product. In this case, we minimize the generalization gap 

between different seismic data. Once we complete the draw-

n-predict step in the current section, the pre-trained memory 

model computes the similarity function and will take over to 

pass the prediction to the next section 
 

 
 

Figure 3: From manual interpretation (a) to geological 

prediction by the ViT model (b). The interpreter draws a 

guideline within a geological body, e.g. salt body, then the 

pre-trained ViT model will predict salt around the drawing 

(c).  

 

The similarity function described in Chen et al. (2021): 

𝑐: ℝ𝐶𝑘
× ℝ𝐶𝑘

 →  ℝ 

is a fundamental component for our implementation, as it 

facilitates the construction of affinity matrices, which are 

crucial for establishing correspondences and enabling 

memory reading. This function must be efficient in both 

speed and memory usage since the number of pairwise 

relations can reach up to million-level when computing a 

single query frame. To compute similarity, we compare a 

memory key 

𝑘𝑀 ∈ ℝ𝐶𝑘×𝐻𝑊 

with a query key 

𝑘𝑄 ∈ ℝ𝐶𝑘×𝐻𝑊 

where H and W are spatial dimensions. The resulting 

pairwise affinity matrix is denoted as  

𝑆 ∈ ℝ𝑇𝐻𝑊×𝐻𝑊 

where T is memory frame, each similarity score is given by  

𝑆𝑖𝑗 ∈ 𝑐(𝑘𝑖
𝑀, 𝑘𝑗

𝑄
) 

representing the similarity between the memory feature 

vector at index i and the query feature vector at index j. 

Figure 4 describe the result after applying memory 

propagation function to different sections.  
 

 
Figure 4: Prediction propagation from Inline=X to 

Inline=X+n. Each predicted salt body will be considered as 

a separate object to propagate through a pretrained long-term 

memory.  
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After the Vision Transformer (ViT) model segments seismic 

data and identifies potential salt bodies, a post-processing 

extraction step (Figure 5) is necessary to delineate precise 

salt boundaries and generate binary classification objects. 

One effective approach is to compute the derivative or 

gradient of the seismic attribute maps, highlighting regions 

of high contrast that correspond to salt-sediment interfaces. 

Applying edge detection algorithms, such as the Sobel 

operator, Laplacian filter, or Canny edge detection, can 

further refine the boundary delineation. Once the salt 

boundaries are extracted, a morphological processing 

technique, such as contour filling or region-growing 

algorithms, can be applied to segment the entire salt body as 

a binary classification mask. This binary mask enables clear 

differentiation between salt and non-salt regions, facilitating 

further geophysical analysis. Additionally, integrating 

uncertainty quantification into this extraction process can 

help assess the reliability of detected boundaries, ensuring 

robust interpretation. The resulting binary classification 

objects can be used for reservoir modeling, velocity model 

building, and geo-mechanical analysis, significantly 

enhancing subsurface characterization and decision-making 

in hydrocarbon exploration and CCUS applications. 

 

 
 

Figure 5: a postprocessing to extract interpreted objects and 

build a subsurface model. 

 

Discussion 

 

While the proposed Vision Transformer (ViT) with affinity 

similarity model has demonstrated strong performance in 

automated seismic interpretation, several areas can be 

explored for future improvements. One potential 

enhancement is the integration of multi-scale feature 

extraction, where different spatial resolutions are utilized to 

improve the detection of both large- and small-scale 

geological structures. Additionally, incorporating self-

supervised learning techniques could allow the model to 

learn more robust seismic features from unlabeled datasets, 

reducing dependency on manually labeled training data. 

Another promising direction is the combination of ViT with 

traditional geophysical inversion methods, enabling the 

model to integrate physical constraints from subsurface 

properties and improve generalizability across different 

seismic datasets. Furthermore, uncertainty quantification 

(UQ) mechanisms can be introduced to provide confidence 

scores for model predictions (Jiang et al., 2022), aiding 

geoscientists in decision-making and risk assessment. 

 

The ViT-based seismic interpretation framework has 

significant implications for Carbon Capture, Utilization, and 

Storage (CCUS), particularly in monitoring injected CO₂ 

and ensuring reservoir integrity. One of the key challenges 

in CCUS is tracking the migration of CO₂ plumes over time, 

ensuring that the injected gas remains within the intended 

storage formation and does not leak through faults or 

fractures. The memory-based ViT model can be extended for 

time-lapse (4D) seismic interpretation, leveraging its long-

term propagation mechanism to track dynamic changes in 

seismic attributes associated with CO₂ movement. By 

integrating uncertainty quantification, the model can 

highlight areas where CO₂ plume predictions are uncertain, 

guiding operators to conduct additional monitoring or 

acquire new seismic data. 

 

Conclusion 

 

In this study, a weakly supervised Vision Transformer (ViT) 

architecture with an affinity-based memory model was 

developed for interactive seismic interpretation. The 

workflow enables interpreters to efficiently delineate 

geological objects by providing initial prompt outlines, 

which the ViT model uses to automatically predict and 

segment target features. This segmentation is further 

enhanced by a memory-based affinity mechanism, which 

propagates the learned geological features across multiple 

seismic sections, ensuring continuity and reducing manual 

effort. This method significantly improves interpretation 

accuracy, automation, and generalization across different 

datasets, making it applicable for reservoir modeling, 

velocity analysis, and CCUS monitoring. The proposed 

approach provides an efficient and scalable solution for 

seismic interpretation, bridging the gap between machine 

learning automation and geophysical expertise while 

minimizing human intervention. 
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