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Summary

Seismic interpretation, particularly tasks such as salt body
segmentation, has significantly advanced through deep
learning methods. While traditional convolutional neural
network  (CNN)-based  approaches have  shown
effectiveness, recent developments in Transformer
architectures, notably Vision Transformers (ViTs), provide
compelling new alternatives. This study introduces a novel
weakly supervised Vision Transformer-based approach
integrated with a long-term affinity similarity memory
mechanism specifically designed for seismic interpretation.
Initial ViT pre-training on synthetic seismic data establishes
robust baseline geological object recognition. Subsequently,
the affinity-based memory model training significantly
enhances spatial continuity, crucial for accurately
interpreting continuous geological structures across seismic
volumes. Distinct from prior approaches, our method
uniquely applies an affinity-based memory propagation
technique specifically adapted for seismic inline
propagation, substantially improving prediction continuity
and considerably reducing manual annotation efforts.

Introduction

Seismic interpretation, particularly tasks like salt body
segmentation,  has  significantly  benefited  from
advancements in deep learning techniques. Convolutional
Neural Networks (CNNs) have traditionally dominated this
field due to their ability to rapidly and accurately identify
geological features. For instance, Jiang et al. (2020)
employed a multi-channel CNN architecture enhanced by
saliency maps, which effectively highlight critical seismic
features to improve neural network predictions. Similarly,
Zhang et al. (2023) demonstrated interactive segmentation
capabilities with a 3D U-Net model refined by a 3D graph-
cut, showing marked improvements in segmentation quality.

Recently, however, Transformer-based architectures,
inspired by successes in Large Language Models (LLMS),
have gained attention across diverse scientific domains. In
computer vision specifically, Vision Transformers (ViTs)
introduced by Dosovitskiy et al. (2021) demonstrated that
pure Transformer models without convolutional layers could
effectively perform image classification tasks by directly
processing image patches. Extending these architectures
from 2D to 3D applications, Cheng and Schwing (2022)
incorporated a long-term memory mechanism inspired by
the Atkinson-Shiffrin model, which consolidates working

memory into long-term memory, effectively managing long-
term spatial coherence without significant memory
overhead.

Inspired by these developments, this study integrates the
vision transformer with a novel affinity-based long-term
memory mechanism tailored specifically for interactive
seismic interpretation tasks, including fault and salt
segmentation. We leverage ViTs to process seismic sections
as image-like inputs and incorporate positional encodings
for geological feature recognition. A long-term memory
module propagates initial manual annotations across
multiple seismic sections, significantly enhancing spatial
continuity and reducing the need for extensive manual
labeling. Experimental results indicate this combined
approach substantially reduces the generalization gap
between training and testing datasets, providing a robust and
interactive framework that improves interpretative accuracy
and generalization for seismic datasets.

Method

Vision Transformers (ViTs) have emerged as strong
competitors to Convolutional Neural Networks (CNNs),
which have traditionally achieved state-of-the-art (SOTA)
performance in various computer vision tasks, including
image recognition. ViTs have demonstrated superior
accuracy and computational efficiency compared to existing
CNN-based models. Adapting ViTs from 2D image
recognition to 3D seismic interpretation poses challenges
currently under active exploration. A viable approach
involves decomposing the 3D seismic volume into a
sequence of 2D inline or crossline slices, further dividing
each slice into small patches suitable for ViT processing
(Figure 1).

Cheng et al. (2021) introduced Space-Time Correspondence
Networks (STCN) leveraging affinity-based propagation,
utilizing L2 similarity instead of a dot product for robust
correspondence mapping between video frames. Inspired by
this methodology, we adapted the STCN architecture
specifically for seismic data interpretation tasks. Our
adaptation involves a two-step training strategy: initially, a
VIiT model is pre-trained as a baseline to recognize
geological objects within individual seismic sections;
subsequently, a propagator model is trained to effectively
propagate predictions across multiple seismic sections,
significantly improving spatial continuity and reducing
annotation efforts.
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Figure 1: An overall architecture to leverage vision transformer and long-term memory.

The presented Vision Transformer (ViT)-based architecture
for seismic interpretation leverages an affinity propagation
mechanism to enhance geological feature detection. The
workflow begins by inputting raw seismic images, which are
divided into patches (Figure 2b) and processed through
transformer layers to extract meaningful representations.
The model then performs initial object segmentation,
identifying key subsurface structures such as salt bodies,
faults, and lithological variations. The affinity-based
propagation module plays a crucial role by ensuring spatial
coherence across multiple seismic sections, refining
predictions and maintaining continuity between frames. The
final output overlays the segmented geological features on
the original seismic data, providing interpreters with a high-
resolution, automated interpretation that reduces manual
effort and increases accuracy.

This advanced architecture has significant applications in
reservoir characterization and geophysical exploration. By
accurately detecting salt bodies, the model helps identify
potential hydrocarbon traps and pressure compartments,
while its ability to map faults and fractures enhances
structural analysis for reservoir connectivity and fluid
migration studies. Additionally, lithology and facies
classification benefit from ViT’s spatial feature learning,
aiding in reservoir quality assessment. The model also
improves seismic-well tie analysis, integrating well log data
to estimate rock and fluid properties with greater precision.
Beyond conventional oil and gas exploration, this
technology proves valuable in carbon storage monitoring,
where it tracks CO. plume migration, and in gas hydrate
detection, mitigating drilling risks. By automating these

critical tasks, this ViT-based approach enhances efficiency,
reduces interpretation uncertainty, and unlocks new
possibilities for subsurface resource management and
geohazard assessment.

Training workflows were designed in two steps. In the first
step, we pre-train an encoder-decoder based ViT to initialize
the model’s detection capability using synthetic seismic data:
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Figure 2: A patching scheme for ViT to work with seismic
data. (a) original seismic data; (b) patching seismic data; (c)
positional encodings implemented in ViT.
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They help the model understand the relative positions of
different patches in the seismic data.

The second step is to train an affinity similarity memory
model. According to Cheng et al. (2022), we consider the
first inline as an orientation line. The manual scratch is
passed into ViT as a prompt to help the VIiT model to
recognize the geological object (Figure 3a). It is also capable
of detecting an object with multiple separated bodies, such
as salt bodies in Figure 3c, shown in red, green and yellow.
The memory model uses the current prediction as a template
to pass predicted objects to the constitutive sections until it
reaches the last line. The affinity matrix plays an important
role in propagation. Cosine similarity calculates the angle
between two vectors and is often viewed as a normalized dot
product. In this case, we minimize the generalization gap
between different seismic data. Once we complete the draw-
n-predict step in the current section, the pre-trained memory
model computes the similarity function and will take over to
pass the prediction to the next section

Figure 3: From manual interpretation (a) to geological
prediction by the ViT model (b). The interpreter draws a
guideline within a geological body, e.g. salt body, then the
pre-trained ViT model will predict salt around the drawing

(©.

The similarity function described in Chen et al. (2021):
cREXRES - R

is a fundamental component for our implementation, as it
facilitates the construction of affinity matrices, which are
crucial for establishing correspondences and enabling
memory reading. This function must be efficient in both
speed and memory usage since the number of pairwise
relations can reach up to million-level when computing a
single query frame. To compute similarity, we compare a
memory key

kM e RE¥xHW
with a query key

kQ e RC"XHW
where A and W are spatial dimensions. The resulting
pairwise affinity matrix is denoted as

Se RTHWXHW

where T is memory frame, each similarity score is given by
Sij € C(k{VI, k]Q)

representing the similarity between the memory feature

vector at index i and the query feature vector at index j.

Figure 4 describe the result after applying memory
propagation function to different sections.

(a) Inline X

(b) Inline X+7

(c) Inline X+2

Inline X+#»

Figure 4: Prediction propagation from Inline=X to
Inline=X+n. Each predicted salt body will be considered as
a separate object to propagate through a pretrained long-term
memory.
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After the Vision Transformer (ViT) model segments seismic
data and identifies potential salt bodies, a post-processing
extraction step (Figure 5) is necessary to delineate precise
salt boundaries and generate binary classification objects.
One effective approach is to compute the derivative or
gradient of the seismic attribute maps, highlighting regions
of high contrast that correspond to salt-sediment interfaces.
Applying edge detection algorithms, such as the Sobel
operator, Laplacian filter, or Canny edge detection, can
further refine the boundary delineation. Once the salt
boundaries are extracted, a morphological processing
technique, such as contour filling or region-growing
algorithms, can be applied to segment the entire salt body as
a binary classification mask. This binary mask enables clear
differentiation between salt and non-salt regions, facilitating
further geophysical analysis. Additionally, integrating
uncertainty quantification into this extraction process can
help assess the reliability of detected boundaries, ensuring
robust interpretation. The resulting binary classification
objects can be used for reservoir modeling, velocity model
building, and geo-mechanical analysis, significantly
enhancing subsurface characterization and decision-making
in hydrocarbon exploration and CCUS applications.

Figure 5: a postprocessing to extract interpreted objects and
build a subsurface model.

Discussion

While the proposed Vision Transformer (ViT) with affinity
similarity model has demonstrated strong performance in
automated seismic interpretation, several areas can be
explored for future improvements. One potential
enhancement is the integration of multi-scale feature
extraction, where different spatial resolutions are utilized to
improve the detection of both large- and small-scale
geological structures. Additionally, incorporating self-
supervised learning techniques could allow the model to

learn more robust seismic features from unlabeled datasets,
reducing dependency on manually labeled training data.
Another promising direction is the combination of ViT with
traditional geophysical inversion methods, enabling the
model to integrate physical constraints from subsurface
properties and improve generalizability across different
seismic datasets. Furthermore, uncertainty quantification
(UQ) mechanisms can be introduced to provide confidence
scores for model predictions (Jiang et al., 2022), aiding
geoscientists in decision-making and risk assessment.

The ViT-based seismic interpretation framework has
significant implications for Carbon Capture, Utilization, and
Storage (CCUS), particularly in monitoring injected CO:
and ensuring reservoir integrity. One of the key challenges
in CCUS is tracking the migration of CO: plumes over time,
ensuring that the injected gas remains within the intended
storage formation and does not leak through faults or
fractures. The memory-based ViT model can be extended for
time-lapse (4D) seismic interpretation, leveraging its long-
term propagation mechanism to track dynamic changes in
seismic attributes associated with CO. movement. By
integrating uncertainty quantification, the model can
highlight areas where CO: plume predictions are uncertain,
guiding operators to conduct additional monitoring or
acquire new seismic data.

Conclusion

In this study, a weakly supervised Vision Transformer (ViT)
architecture with an affinity-based memory model was
developed for interactive seismic interpretation. The
workflow enables interpreters to efficiently delineate
geological objects by providing initial prompt outlines,
which the ViT model uses to automatically predict and
segment target features. This segmentation is further
enhanced by a memory-based affinity mechanism, which
propagates the learned geological features across multiple
seismic sections, ensuring continuity and reducing manual
effort. This method significantly improves interpretation
accuracy, automation, and generalization across different
datasets, making it applicable for reservoir modeling,
velocity analysis, and CCUS monitoring. The proposed
approach provides an efficient and scalable solution for
seismic interpretation, bridging the gap between machine
learning automation and geophysical expertise while
minimizing human intervention.
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