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(57) ABSTRACT

Seismic image data acquired for a subsurface formation
from a data acquisition system is input into a deep neural
network to generate fault detection data for the subsurface
formation comprising probability values at a grid of loca-
tions in the subsurface formation. The fault detection data is
preprocessed via downsampling and distributed weighted
factors and inputted into a generative adversarial network
(GAN) upscaling generator to create high resolution fault
detection data with minimized distortion and artifacts. The
GAN upscaling generator is pre trained on synthetic fault
data in a GAN training system using adversarial training
against a GAN upscaling discriminator, and both the GAN
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GEOLOGICAL FEATURE DETECTION
USING GENERATIVE ADVERSARIAL
NEURAL NETWORKS

BACKGROUND

The disclosure generally relates to the field of subsurface
formation evaluation, and more particularly to geological
feature detection using generative adversarial neural net-
works.

Interpretation of seismic data can enhance understanding
of subsurface geological features in a formation (e.g., faults,
fractures, groups of fractures, porous regions, etc.). These
seismic interpretations can provide the position and shape of
these subsurface geological features. The position and shape
of these subsurface geological features can be useful to
optimizing hydrocarbon production during drilling and
stimulation treatments. For example, drilling location, vari-
ous drilling parameters, production parameters, drilling
project characterization and ranking, etc. can be determined
based on knowledge of the position and shape of these
subsurface geological features. Increasing the accuracy and
speed of seismic interpretation through the use of fault
interpretation algorithms can increase the efficiency,
economy, and safety of drilling and stimulation operations.

The complexity of seismic data can result in fault inter-
pretation workflows that include several operations which
involve significant manual effort and/or a substantial number
of parameters. Moreover, each operation can involve a
significant amount of human input, such as testing many
different parameters in these algorithms to determine their
effects, classifying several types of detected features, and
verifying that an algorithm is accurate during post-process-
ing. These factors can increase the time and computing cost
of performing a seismic interpretation and reduce the accu-
racy of the resulting interpretations.

Generative adversarial networks comprise a generator
network and a discriminator network that simultaneously
learn an unknown data distribution. Training occurs when
the generator receives batches of input data which it uses to
generate a batch of output data which the discriminator
evaluates. The discriminator trains itself (e.g., using stochas-
tic gradient descent) on the batch of output data and simul-
taneously evaluates the quality of the batch of output data
using data from the unknown distribution corresponding to
the batch of input data. Based on this evaluation, the
discriminator returns a batch of quality values for the batch
of output data to the generator. The generator trains itself
according to the batch of quality values it receives from the
discriminator. The loss functions for the generator and the
discriminator are related, and the distributions of the gen-
erator and discriminator are trained simultaneously for each
batch of data.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the disclosure may be better understood by
referencing the accompanying drawings.

FIG. 1 depicts a schematic diagram of a borehole seismic
survey environment, according to some embodiments.

FIG. 2 is a conceptual diagram of a data processing
system for fault detection image generation, according to
some embodiments.

FIG. 3 is a conceptual diagram of training operations for
a GAN upscaling generator training system, according to
some embodiments.
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FIG. 4 depicts a first example input and output to a trained
GAN upscaling generator, according to some embodiments.

FIG. 5 depicts a second example input and output to a
trained GAN upscaling generator, according to some
embodiments.

FIG. 6 depicts example input and output during training
operations of a GAN upscaling generator training system,
according to some embodiments.

FIG. 7 is a flowchart of example operations for determin-
ing a position of a geological feature in subsurface forma-
tion, according to some embodiments.

FIG. 8 depicts an example drilling system, according to
some embodiments.

FIG. 9 depicts an example wellbore system near a fault,
according to some embodiments.

FIG. 10 depicts an example computer, according to some
embodiments.

DESCRIPTION

The description that follows includes example systems,
methods, techniques, and program flows that embody
aspects of the disclosure. However, it is understood that this
disclosure may be practiced without these specific details.
For instance, this disclosure refers to generating high reso-
Iution fault images with minimized distortion and artifacts in
illustrative examples. Aspects of this disclosure can be
instead applied to generating high resolution images of salt
bodies or seismic facies with minimized distortion and
artifacts. In other instances, well-known instruction
instances, protocols, structures and techniques have not been
shown in detail in order not to obfuscate the description.
Overview

Fault identification systems can include edge detection.
After any edge detection, fault identification systems can
input seismic image data for a formation into a deep neural
network (DNN) (e.g., a convolutional neural network
(CNN)). The DNN can be trained on seismic data with
known fault locations and can output fault detection data
that includes a probability map that predicts the likelihood of
a fault occurring at a set of locations (i.e. a grid) in the
formation. However, these probability maps can suffer from
artifacts due to the internal architecture of the DNN. In the
case of CNNs, these artifacts are often spatial artifacts such
as horizontal or vertical edges that can distort fault detection
data. Example embodiments can include a generator that
recovers high resolution fault detection images (i.e., heat
maps of the probability map for fault detection) from fault
detection images that have distortion or artifacts.

The generator can be a GAN upscaling generator trained
using a generative adversarial network (GAN) on synthetic
fault data. The synthetic fault data can include distorted
synthetic fault detection data with synthetically generated
artifacts and corresponding synthetic fault detection data
without artifacts. In some embodiments, the GAN upscaling
generator is configured to receive downsampled (low reso-
Iution) and weighted synthetic fault detection data. The
GAN upscaling generator can then output upscaled (high
resolution) fault detection data with mitigated image arti-
facts. The distorted synthetic fault detection data can be both
downsampled and weighted in order to obfuscate any dis-
tortions and artifacts before the GAN upscaling generator
produces an upscaled version of the downsampled weighted
synthetic fault detection data. The GAN can also include a
GAN upscaling discriminator that is used to train the GAN
upscaling generator to generate high quality upscaled fault
detection data. Once trained, the GAN upscaling generator
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can efficiently produce high resolution versions of fault
detection data that have minimal distortion and artifacts.
Example [llustrations

FIG. 1 depicts a schematic diagram of a borehole seismic
survey environment, according to some embodiments. Seis-
mic sensors 102 are in a spaced-apart arrangement within a
borehole 103 to detect seismic waves. In this example, the
seismic sensors 102 are attached to the borehole 103 or a
casing that has been positioned the borehole 103. In some
other embodiments, the seismic sensors 102 can be part of
a drilling operation or wireline logging operation. An
example of such a drilling operation and a wireline logging
operation are depicted in FIG. 8 and FIG. 9, respectively,
which are further described below. Further, the seismic
sensors 102 can communicate wirelessly or via cable to a
data acquisition system 106 at a surface 105, where the data
acquisition system 106 receives, processes, and stores seis-
mic signal data collected by the seismic sensors 102. To
generate seismic signal data, a seismic source 108 can be
activated at one or more positions to generate seismic energy
waves that propagate through a formation 110. Such waves
reflect from acoustic impedance discontinuities to reach the
seismic sensors 102. Illustrative discontinuities include
faults, boundaries between formation beds, and boundaries
between formation fluids such as the faults 112, 114, and 116
in FIG. 1. The discontinuities can appear as bright spots in
the subsurface structure representation that is derived from
the seismic signal data. The collected seismic signal data can
be used to generate a seismic dataset. While FIG. 1 depicts
the data acquisition system 106 and the seismic source 108
at the surface, in other embodiments, either or both can be
positioned at other locations. For example, either or both the
data acquisition system 106 and the seismic source 108 can
be positioned in the borehole 103.

FIG. 2 is a conceptual diagram of a data processing
system for fault detection image generation, according to
some embodiments. FIG. 2 depicts a data processing system
200 that includes a data acquisition system (DAS) 210 and
a seismic data processing system 211. The DAS 210 can be
an example of the data acquisition system 106 of FIG. 1. The
DAS 210 collects seismic image data 202 for a subsurface
formation. For example with reference to FIG. 1, the DAS
200 can collect the seismic image data 202 from the seismic
sensors 102 positioned in the borehole 103. The DAS 210
forwards the seismic image data 202 to the seismic data
processing system 211. The seismic data processing system
211 can include a deep neural network (DNN) 201, a trained
GAN upscaling generator 203, and a data transformer 205.
The DNN 201 receives the seismic image data 202. The
DNN 201 uses the seismic image data 202 as input and
outputs fault detection data 204 to the trained GAN upscal-
ing generator 203. The GAN upscaling generator 203 uses
the fault detection data 204 as input to generate upscaled
estimates of fault detection data 206 to send to the data
transformer 205. The data transformer 205 processes the
upscaled estimates of fault detection data 206 to create
3-dimensional fault images 208.

The DNN 201 can be a CNN trained on seismic image
data with known fault locations to generate a probability
map of fault locations in the seismic image data. The fault
detection data 204 output by the DNN 201 can include a
probability map for a set of locations in the formation that
indicate a likelihood that a fault occurs at each location. The
probability map can comprise a set of tuples, each tuple
having a probability value and a set of coordinates for a
location with respect to a frame of reference in the subsur-
face formation. This set of locations can be a grid of
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locations throughout the subsurface formation, typically
windowed inside a rectangular prism. In some embodiments,
the DNN 201 is pretrained on seismic image data with
known fault locations with a loss function that penalizes low
probability values at known fault locations and high prob-
ability values and known locations without a fault.

The DNN 201 can include, in addition to a neural net-
work, an edge detector that searches for candidate discon-
tinuities comprising subsets of the seismic data. The edge
detector then partitions the seismic data by candidate dis-
continuities and sends each partition element to the neural
network to classify a partition-level likelihood of fault
occurrence. This operation can introduce additional artifacts
due to partitioning in the seismic data.

The trained GAN upscaling generator 203 receives the
fault detection data 204 comprising a map of probability
values for the subsurface formation. The trained GAN
upscaling generator 203 can be configured to downsample
(i.e. reduce the resolution) of the map of probability values
by a predetermined factor (e.g., a factor of 4) to produce
lower resolution fault detection data to use as input. In other
embodiments, a separate data processing component (not
pictured) can downsample the fault detection data 204
before inputting the data into the trained GAN upscaling
generator 203. The downsampling operation can include
blocking the fault detection data into 2x2 blocks for each
slice of seismic data in an axial direction and sampling a
single probability value from each 2x2 block. In embodi-
ments where the downsampling occurs at a factor different
than 4, different sizes of blocks can be used. Additionally,
different shapes other than blocks can be implemented. The
downsampling can choose a probability value using one or
more different techniques. For example, the downsampling
can choose a probability value at random from each 2x2
block, can choose a probability value evenly distributed
across 2x2 blocks, can average the probability values within
each 2x2 block, etc. Any standard downsampling operations
on the fault detection data 204 can alternatively be imple-
mented.

As an additional preprocessing operation performed by
the DNN 201 or a separate data processing component, the
downsampled fault detection data can be modified using
distributed weight factors. The distributed weighting factors
modify probability values in the downsampled fault detec-
tion data to be soft thresholded towards O if the probability
values are near 0 and towards 1 if the probability values are
towards 1. For example, the soft thresholding function can
be, for a probability value x, x* if x<0.5, and 1-(1-x)* if
x>0.5. Other soft thresholding functions can be used.

The trained GAN upscaling generator 203 can use the
fault detection data 204, after a preprocessing operation(s) as
described variously above, as input to its’ internal network
layers. The fault detection data 204 can propagate through
internal layers of the GAN upscaling generator 203 and a
final layer produces an output that includes the upscaled
estimate of fault detection data 206. The upscaled estimate
of fault detection data 206 can include a probability map of
the formation at the same resolution as the fault detection
data 204 or at a different increased resolution.

The data transformer 205 processes the upscaled estimate
of fault detection data 206 to produce fault images 208. For
example, the data transformer 205 can produce three-dimen-
sional fault images. The data transformer 205 can, for
example, convert JPEG or PNG formatted fault data into an
SEGY formatted image. Probability values in the fault
detection data 206 can be converted into a graphical heat
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map over the formation using image processing software
designed for seismic data processing.

FIG. 3 is a conceptual diagram of training operations for
a GAN upscaling generator training system, according to
some embodiments. In some embodiments, such training
operations can be used to create the trained GAN upscaling
generator 203 depicted in FIG. 2. A data processor 303
queries a fault data repository 300 for synthetic fault data to
be used for training. The fault data repository 300 returns
fault data which the data processor 303 parses and sends
downsampled synthetic fault data 302 and true synthetic
fault data 304 to a GAN upscaling generator 305 and to a
GAN upscaling discriminator 307, respectively, within a
GAN upscaling generator training system 301. The GAN
upscaling generator 305 and the GAN upscaling discrimi-
nator 307 train on batches of the data 302, 304 by an
adversarial process where the GAN upscaling generator 305
sends upscaled synthetic fault data 308 to the GAN upscal-
ing discriminator 307 and, in response, the GAN upscaling
discriminator 307 sends an upscaled synthetic fault data
evaluation 306 to the GAN upscaling generator 305.

The synthetic fault data retrieved from the fault data
repository 300 can be generated prior to training using real
fault data as reference and can be augmented by various
random processes including scaling, rotation, dilation, etc.
True fault data and distorted fault data can be stored in the
fault data repository 300, wherein the distorted fault data is
generated from the true fault data by adding distortion and
artifacts. For example, the true fault data can be run through
a deep neural network (such as the DNN 201 with reference
to FIG. 2) in order to generate distorted fault data. The data
processor 303 separates the true fault data and the corre-
sponding distorted fault data and sends the true synthetic
fault data 304 to the GAN upscaling discriminator 307 in
batches. In corresponding batches, the data processor 303
downsamples the distorted fault data to generate the down-
sampled synthetic fault data 302 which it sends to the GAN
upscaling generator 305. This downsampling step can occur,
for example, as in the description for FIG. 2.

The GAN upscaling generator 305 and the GAN upscal-
ing discriminator can learn the distribution of the true
synthetic fault data 304 in tandem via an adversarial game
where the GAN upscaling generator 305 generates batches
of upscaled synthetic fault data 308 based on the down-
sampled synthetic fault data. The GAN upscaling discrimi-
nator 307 receives the upscaled synthetic fault data 308 and
evaluates it based on its learned distribution of the true
synthetic fault data (encoded as internal network param-
eters) to generate the upscaled synthetic fault data evaluation
306. The GAN upscaling discriminator 307 can simultane-
ously receive the true synthetic fault data 304 and compare
the true synthetic fault data 304 with the upscaled synthetic
fault data 308 (using some appropriate distance metric on
the synthetic fault data, for example Wasserstein distance).
Using a discriminator loss function relative to the upscaled
synthetic fault data evaluation 306 and this comparison, the
GAN upscaling discriminator 307 can backpropagate the
loss through its internal network parameters to improve its
knowledge of the distribution of true synthetic fault data
304. The GAN upscaling generator 305 can receive the
upscaled synthetic fault data evaluation 306 and can update
its internal network parameters according to a generator loss
function that uses the upscaled synthetic fault data evalua-
tion 306 as input.

The generator loss function and discriminator loss func-
tion for the GAN upscaling generator 305 and the GAN
upscaling discriminator 307 respectively can be designed so

10

15

20

25

30

35

40

45

50

55

60

65

6

that the GAN upscaling generator 305 and the GAN upscal-
ing discriminator 307 learn the distribution of true synthetic
fault data 304 in tandem. These loss functions can be
standard loss functions used for generating super resolution
images using GANs. Moreover, the internal architecture of
the GAN upscaling generator 305 and the GAN upscaling
discriminator 307 can be a standard GAN architecture for
super resolution image generation for GANs. Various types
of internal architecture using internal convolutional layers,
max-pooling activation functions, leaky, parametric, or stan-
dard rectified linear unit activation functions, fully con-
nected layers, residual blocks of layers with skip connection,
etc. can be used with varying parameters depending on the
distribution of the synthetic fault data.

In some embodiments, the GAN upscaling generator 305
and the GAN upscaling discriminator 307 are trained on
batches of data 302, 304 until their loss function values for
a batch of data are below a threshold loss function value, or
until a threshold number of batches of data (“epochs™) is
reached. Once training has terminated, the GAN upscaling
generator 305 can be stored in a model repository for
deployment using real world fault data.

FIGS. 4-6 are examples of fault detection data (as output,
for example, by the DNN 201 with reference to FIG. 2) and
corresponding outputs of high resolution fault detection data
from a trained GAN upscaling generator (for example, the
trained GAN upscaling generator 203 with reference to FIG.
2) with minimized distortion and artifacts.

FIG. 4 is an example input and output to a trained GAN
upscaling generator, according to some embodiments. FIG.
4 comprises fault detection data 401, 407 that are input (after
a downsampling and weighting processing step as described
variously above) into trained GAN upscaling generator 400
to generate denoised fault detection data 403, 409. The data
401 and 407 are 2-dimensional seismic fault images (i.e.
heatmaps of probability values of faults). Distortion com-
prising blurriness in the data 401, 403 as well as edge-based
artifacts such as the artifact 405 are minimized in the data
407, 409 which have a sharper resolution.

FIG. 5 is an example input and output to a trained GAN
upscaling generator, according to some embodiments. FIG.
5 comprises fault detection data 501, that is input (after a
downsampling and weighting processing step as described
variously above) into trained GAN upscaling generator 500
to generate denoised fault detection data 503. The data 501
and 503 are 2-dimensional slices of original 3-dimesional
fault images (not pictured). An image artifact 505 due to a
fault identification workflow is mitigated in data 503, and
the blurriness in data 501 is sharpened in data 503.

FIG. 5 is an example input and output to a trained GAN
upscaling generator, according to some embodiments. FIG.
5 comprises fault detection data 501, 503, 505, and 507 that
are input (after a downsampling and weighting processing
step as described variously above) into trained GAN upscal-
ing generator 500 to generate denoised fault detection data
509, 511, 513, 515. Fault blurriness occurring in dotted
circles depicted in data 501, 503, 505, and 507 is sharpened
in corresponding dotted circles in data 509, 511, 513, and
515. The dotted circles are pictured for exposition and actual
data input into the trained GAN upscaling generator 500
does not comprise dotted circles.

FIG. 6 is an example input and output during training
operations of a GAN upscaling generator training system,
according to some embodiments. Downsampled and
weighted fault data 601 is input into a GAN upscaling
generator 600, which generates high resolution upscaled
fault data 605. A GAN upscaling discriminator 602 receives
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the high resolution upscaled fault data 605 as well as the true
fault data 603 and returns to the GAN upscaling generator an
upscaled fault data evaluation 607 based on a comparison
between the data 603 and the data 605. This comparison is
based, at least in part, on the sharpness of faults identified in
the pictured dotted circles (not included in the actual data
603, 605 used as input/output of each model).

FIG. 7 is a flowchart of example operations for determin-
ing a position of a geological feature in subsurface forma-
tion, according to some embodiments. The operations in
FIG. 7 are described with reference to geological feature
data. The geological feature data can include fault detection
data as described herein. Some of the operations of the
flowchart can be performed by software, firmware, hardware
or a combination thereof. The operations of the flowchart
start at block 701.

At block 701, a data acquisition system (DAS) detects
seismic waves propagated through a subsurface formation.
For example, with reference to FIG. 1, the seismic sensors
102 can forward detected seismic waves to the data acqui-
sition system 106.

At block 703, the DAS generates a seismic dataset from
the seismic waves detected at block 701. For example, with
reference to FIG. 1, the data acquisition system 106 can
process the data received from the seismic sensor 102 to
generate the seismic dataset.

At block 705, the DAS generates a subsurface image
based on the seismic dataset generated at block 703. For
example, with reference to FIG. 1, the data acquisition
system 106 can extract subsurface images from the seismic
dataset corresponding to the subsurface formation.

At block 707, the subsurface image is processed using a
geological feature detection neural network (for example,
the DNN 201 with reference to FIG. 2) to generate geologi-
cal feature data from the subsurface image. The geological
feature data comprises probability values at locations
throughout the subsurface formation, and the geological
feature neural network can include an edge detection algo-
rithm as described above.

At block 709, a data processor downsamples the geologi-
cal feature data to create downsampled geological feature
data as described above. For example, the data processor can
downsample by a factor of 4 by choosing a pixel in 2x2
subblocks of the geological feature data at random.

At block 711, the data processor adds distributed weight-
ing factors to downsampled geological feature data to create
weighted geological feature data. The distributed weighting
factors can comprise a soft thresholding functions that trends
high probability values towards 1 and low probability values
towards 0 as described variously above.

At block 713, the weighted geological feature data is
inputted into a trained generator neural network to create
updated geological feature data with minimized distortion
and artifacts. The trained generator neural network can be a
trained GAN upscaling generator as described variously
above.

At block 715, a position of a geological feature is deter-
mined based on updated geological feature data. This opera-
tion can be performed by a domain-level expert or by a
computer that is configured to receive updated geological
feature data and run an algorithm on the geological feature
data to determine high-likelihood positions of the geological
feature. The geological feature can be, for example, a fault
or set of faults in the subsurface formation.

The flowcharts are provided to aid in understanding the
illustrations and are not to be used to limit scope of the
claims. The flowcharts depict example operations that can
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vary within the scope of the claims. Additional operations
may be performed; fewer operations may be performed; the
operations may be performed in parallel; and the operations
may be performed in a different order. For example, the
operations depicted in blocks 701 and 703 can be performed
in parallel or concurrently. With respect to FIG. 7, a data
acquisition system is not necessary depending on the con-
figuration of downhole sensors used to detect seismic data.
It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by program code. The program code
may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
machine or apparatus.

Example Drilling System

FIG. 8 depicts an example drilling system, according to
some embodiments. FIG. 8 depicts a drilling system 800.
The drilling system 800 includes a drilling rig 801 located at
the surface 802 of a borehole 803. The initial position of the
borehole 803 and various operational parameters (e.g. drill-
ing speed, weight on bit, drilling fluid pump rate, drilling
direction, drilling fluid composition) for drilling can be
selected based on the results of the operations using an
automated fault interpretation system (as described above).
The drill string 804 can be operated for drilling the borehole
803 through the subsurface formation 832 with the bottom-
hole assembly (BHA).

The BHA includes a drill bit 830 at the downhole end of
the drill string 804. The drill bit 830 is in the vicinity of a
fault 875, wherein the position of fault 875 can be deter-
mined by operations described herein. The BHA and the drill
bit 830 can be coupled to a computer 850, which can operate
the drill bit 830 as well as receive data based on the sensors
attached to the BHA. The drill bit 830 can be operated to
create the borehole 803 by penetrating the surface 802 and
subsurface formation 832. In some embodiments, a drilling
plan can call for the drill bit 830 to stop drilling when within
a range of the fault 875. By increasing the accuracy of the
seismic interpretation, the drill bit 830 can more safely and
easily avoid penetrating through the fault 875. For example,
sensors on the BHA can transmit a signal to the computer
850 that the drill bit is near the fault 875, and the computer
850 can stop the drill bit 830.

Example Wellbore System

A wellbore system 900 depicted in FIG. 9 comprises a
wellbore 904 penetrating at least a portion of a subterranean
formation 902. The wellbore 904 comprises one or more
injection points 914 where one or more fluids can be injected
from the wellbore 904 into the subterranean formation 902.
The subterranean formation 902 can comprise pores initially
saturated with reservoir fluids (e.g., oil, gas, and/or water).
In certain embodiments, the wellbore system 900 can be
treated by the injection of a fracturing fluid, acid, or prop-
pant at one or more injection points 914 in the wellbore 904.
In certain embodiments, the one or more injection points 914
can correspond to injection points 914 in a casing of the
wellbore 904. When fluid enters the subterranean formation
902 at the injection points 914, one or more fractures 918
can be opened. In certain embodiments, a diverting agent
can enter the injection point 914 and restrict the flow of
further fluid. In some embodiments, the fracturing fluid can
comprise a diverter.

As depicted in FIG. 9, the subterranean formation 902
includes at least one fracture network 908 connected to the
wellbore 904. The fracture network 908 shown in FIG. 9
contains a number of junctions and fractures 918. The
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number of junctions and fractures can vary drastically and/or
unpredictably depending on the specific characteristics of
the subterranean formation 902. For example, the fracture
network 908 can comprise on the order of thousands of
fractures 918 to tens of thousands of fractures 918. In some
embodiments, these fractures can be within range of a fault
975, wherein the position, orientation, and/or shape of the
fault 975 is determined using an automated fault interpre-
tation system.

In certain embodiments, an operational parameter can
comprise one or more wellbore treatment controls and/or
wellbore production controls. These operational parameters
can be selected to avoid faults identified in the operations
described above. In certain embodiments, the wellbore treat-
ment controls can characterize a treatment operation for a
wellbore 904 penetrating at least a portion of a subterranean
formation 902. In certain embodiments, the operational
parameters can include, but are not limited to an amount of
acid, fracturing fluid or diverter pumped into the wellbore
system 900, a proppant concentration pumped into the
wellbore system 900, a proppant size used during pumping
into the wellbore system 900, a wellbore pressure at the
injection points 914, a fluid or diverter flow rate at the
wellbore inlet 910, the pressure at the wellbore inlet 910, a
duration of a acidizing/stimulation treatment, a diverter
particle diameter, and any combination thereof. In certain
embodiments, in response to calculations determining that a
fracturing or acidization operation may damage or perforate
the fault 975, an operational parameter can be altered to
prevent the damage/perforation from occurring. For
example, a computer system can determine that a set of
operational parameters will result in damaging the fault 975,
and, in response, reduce a fluid flow rate at the surface 906.

In certain embodiments, the one or more operational
parameters can be changed in response to real-time mea-
surements. In some embodiments, real-time measurements
can comprise pressure measurements, flow rate measure-
ments, and seismic measurements. In certain embodiments,
real-time measurements can be obtained from one or more
wellsite data sources or sensors in acoustic communication
with the subterranean formation 902. Wellsite data sources
can include, but are not limited to, flow sensors, pressure
sensors, thermocouples, and any other suitable measurement
apparatus. In certain embodiments, wellsite data sources can
be positioned at the surface, on a downhole tool, in the
wellbore 904 or in fractures 918. Pressure measurements
can, for example, be obtained from a pressure sensor at a
surface of the wellbore 904.

Example Computer

A computer device 1000 includes a processor 1001 (pos-
sibly including multiple processors, multiple cores, multiple
nodes, and/or implementing multi-threading, etc.). The com-
puter device 1000 includes a memory 1007. The memory
1007 can be system memory (e.g., one or more of cache,
SRAM, DRAM, zero capacitor RAM, Twin Transistor
RAM, eDRAM, EDO RAM, DDR RAM, EEPROM,
NRAM, RRAM, SONOS, PRAM, etc.) or any one or more
of the above already described possible realizations of
machine-readable media. The computer device 1000 also
includes a bus 1003 (e.g., PCIL, ISA, PCI-Express, Hyper-
Transport® bus, InfiniBand® bus, NuBus, etc.) and a net-
work interface 1005 (e.g., a Fiber Channel interface, an
Ethernet interface, an internet small computer system inter-
face, SONET interface, wireless interface, etc.).

In some embodiments, the computer device 1000 includes
a signal processor 1012 and an operational parameter con-
troller 1013. The signal processor 1012 is configured to
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detect seismic data in a subsurface formation, generate fault
detection data using the seismic data and a deep neural
network, and generate high resolution fault detection data
with minimized distortion and artifacts from the fault detec-
tion data using a GAN upscaling generator (as described
herein). The operational parameter controller 1013 can per-
form one or more operations for controlling a drilling system
or a wellbore system, including controlling a drill bit, fluid
pump rate, etc. For example, the operational parameter
controller 1013 can modity a drilling direction, weight on
bit, rotation rate of the drill bit, etc. Any one of the
previously described functionalities can be partially (or
entirely) implemented in hardware and/or on the processor
1001. For example, the functionality can be implemented
with an application specific integrated circuit, in logic
implemented in the processor 1001, in a co-processor on a
peripheral device or card, etc. Further, realizations can
include fewer or additional components not illustrated in
FIG. 10 (e.g., video cards, audio cards, additional network
interfaces, peripheral devices, etc.). The processor 1001 and
the network interface 1005 are coupled to the bus 1003.
Although illustrated as being coupled to the bus 1003, the
memory 1007 can be coupled to the processor 1001. The
computer device 1000 can be integrated into component(s)
of the drill pipe downhole and/or be a separate device at the
surface that is communicatively coupled to the BHA down-
hole for controlling and processing signals (as described
herein).

As will be appreciated, aspects of the disclosure can be
embodied as a system, method or program code/instructions
stored in one or more machine-readable media. Accordingly,
aspects can take the form of hardware, software (including
firmware, resident software, micro-code, etc.), or a combi-
nation of software and hardware aspects that can all gener-
ally be referred to herein as a “circuit,” “module” or “sys-
tem.” The functionality presented as individual modules/
units in the example illustrations can be organized
differently in accordance with any one of platform (operat-
ing system and/or hardware), application ecosystem, inter-
faces, programmer preferences, programming language,
administrator preferences, etc.

Any combination of one or more machine-readable medi-
um(s) can be utilized. The machine-readable medium can be
a machine-readable signal medium or a machine-readable
storage medium. A machine-readable storage medium can
be, for example, but not limited to, a system, apparatus, or
device, that employs any one of or combination of elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor technology to store program code. More specific
examples (a non-exhaustive list) of the machine-readable
storage medium would include the following: a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a machine-readable storage medium can be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device. A machine-readable storage medium is
not a machine-readable signal medium.

A machine-readable signal medium can include a propa-
gated data signal with machine-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal can take any of a
variety of forms, including, but not limited to, electro-
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magnetic, optical, or any suitable combination thereof. A
machine-readable signal medium can be any machine-read-
able medium that is not a machine-readable storage medium
and that can communicate, propagate, or transport a program
for use by or in connection with an instruction execution
system, apparatus, or device.

Program code embodied on a machine-readable medium
can be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the disclosure can be written in any combination
of one or more programming languages, including an object
oriented programming language such as the Java® program-
ming language, C++ or the like; a dynamic progmmming
language such as Python; a scripting language such as Perl
programming language or PowerShell script language; and
conventional procedural progmmming languages, such as
the “C” programming language or similar programming
languages. The program code can execute entirely on a
stand-alone machine, can execute in a distributed manner
across multiple machines, and can execute on one machine
while providing results and or accepting input on another
machine.

The program code/instructions can also be stored in a
machine-readable medium that can direct a machine to
function in a particular manner, such that the instructions
stored in the machine-readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

As used herein, the term “or” is inclusive unless otherwise
explicitly noted. Thus, the phrase “at least one of A, B, or C”
is satisfied by any element from the set {A, B, C} or any
combination thereof, including multiples of any element.
Example Embodiments

Embodiment 1: a method comprising detecting, by a
seismic sensor, seismic waves propagated through a subsur-
face formation, generating a subsurface image based on the
detected seismic waves, converting, using a geological fea-
ture detection neural network, pixels of the subsurface image
into probability values, wherein a probability value defines
a likelihood of a geological feature occurring at a corre-
sponding location of a pixel in the subsurface formation,
reducing a resolution of the probability values of the sub-
surface image to create reduced resolution probability values
of the subsurface image, weighting one or more of the
reduced resolution probability values based on the likeli-
hood of the geological feature occurring at a corresponding
location of the pixel in the subsurface formation, creating
increased resolution probability values of the subsurface
image using a trained generator neural network based on
inputting of the weighted reduced probability values into the
trained generator neural network, and determining a position
of a geological feature in the subsurface formation based on
the increased resolution probability values of the subsurface
image.

Embodiment 2: the method of embodiment 1, wherein
reducing the resolution of the probability values comprises
downsampling of the probability values of the subsurface
image.

Embodiment 3: the method of one or more of embodi-
ments 1-2, wherein weighting the one or more reduced
resolution probability values comprises based on a determi-
nation that a reduced resolution probability value is more
likely to correspond to a location in the subsurface image
that includes a part of a geological feature than a location in
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the subsurface image that does not include a part of a
geological feature, increasing the reduced resolution prob-
ability value, and based on a determination that a reduced
resolution probability value is less likely to correspond to a
location in the subsurface image that includes a part of a
geological feature than a location in the subsurface image
that does not include a part of a geological feature, decreas-
ing the reduced resolution probability value.

Embodiment 4: the method of one or more of embodi-
ments 1-3, wherein the geological feature is at least one of
a fracture and a geological fault.

Embodiment 5: the method of one or more of embodi-
ments 1-4, further comprising training the trained generator
neural network using a generative adversarial network.

Embodiment 6: the method of embodiment 5, wherein
training the trained generator neural network using the
generative adversarial network comprises inputting batches
of synthetic geological feature data into the generative
adversarial network.

Embodiment 7: the method of one or more of embodi-
ments 1-6, further comprising modifying a hydrocarbon
recovery operation in a borehole formed in the subsurface
formation based on the position of the geological feature.

Embodiment 8: a non-transitory, machine-readable
medium having program code stored thereon that is execut-
able by a machine, the program code comprising instruc-
tions to receive, from a seismic sensor, seismic waves
propagated through a subsurface formation, generate a sub-
surface image based on the detected seismic waves, convert,
using a geological feature detection neural network, pixels
of the subsurface image into probability values, wherein a
probability value defines a likelihood of a geological feature
occurring at a corresponding location of a pixel in the
subsurface formation, reduce a resolution of the probability
values of the subsurface image to create reduced resolution
probability values of the subsurface image, weight one or
more of the reduced resolution probability values based on
the likelihood of the geological feature occurring at a
corresponding location of the pixel in the subsurface for-
mation, create increased resolution probability values of the
subsurface image using a trained generator neural network
based on inputting of the weighted reduced probability
values into the trained generator neural network, and deter-
mine a position of a geological feature in the subsurface
formation based on the increased resolution probability
values of the subsurface image.

Embodiment 9: the non-transitory, machine-readable
medium of embodiment 8, wherein the instructions to
reduce the resolution of the probability values comprise
instructions to downsample the probability values of the
subsurface image.

Embodiment 10: the non-transitory, machine-readable
medium of one or more of embodiments 8-9, wherein the
instructions to weight the one or more reduced resolution
probability values comprise instructions to, based on a
determination that a reduced resolution probability value is
more likely to correspond to a location in the subsurface
image that includes a part of a geological feature than a
location in the subsurface image that does not include a part
of a geological feature, increasing the reduced resolution
probability value, and based on a determination that a
reduced resolution probability value is less likely to corre-
spond to a location in the subsurface image that includes a
part of a geological feature than a location in the subsurface
image that does not include a part of a geological feature,
decreasing the reduced resolution probability value.
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Embodiment 11: the non-transitory, machine-readable
medium of one or more of embodiments 8-10, wherein the
geological feature is at least one of a fracture and a geo-
logical fault.

Embodiment 12: the non-transitory, machine-readable
medium of one or more of embodiments 8-11, wherein the
program code further comprises instructions to train the
trained generator neural network using a generative adver-
sarial network.

Embodiment 13: the non-transitory, machine-readable
medium of embodiment 12, wherein the instructions to train
the trained generator neural network using the generative
adversarial network comprise instructions to input batches
of synthetic geological feature data into the generative
adversarial network.

Embodiment 14: the non-transitory, machine-readable
medium of one or more of embodiments 8-13, wherein the
program code further comprises instructions to modify a
hydrocarbon recovery operation in a borehole formed in the
subsurface formation based on the position of the geological
feature.

Embodiment 15: a system comprising a seismic sensor to
detect seismic waves propagated through a subsurface for-
mation, a processor, and a machine-readable medium having
instructions stored thereon that are executable by the pro-
cessor to cause the system to, generate a subsurface image
based on the detected seismic waves, convert, using a
geological feature detection neural network, pixels of the
subsurface image into probability values, wherein a prob-
ability value defines a likelihood of a geological feature
occurring at a corresponding location of a pixel in the
subsurface formation, reduce a resolution of the probability
values of the subsurface image to create reduced resolution
probability values of the subsurface image, weight one or
more of the reduced resolution probability values based on
the likelihood of the geological feature occurring at a
corresponding location of the pixel in the subsurface for-
mation, create increased resolution probability values of the
subsurface image using a trained generator neural network
based on inputting of the weighted reduced probability
values into the trained generator neural network, and deter-
mine a position of a geological feature in the subsurface
formation based on the increased resolution probability
values of the subsurface image.

Embodiment 16: the system of embodiment 15, wherein
the instructions executable by the processor to cause the
system to reduce the resolution of the probability values
comprise instructions to downsample the probability values
of the subsurface image.

Embodiment 17: the system of one or more of embodi-
ments 15-16, wherein the instructions executable by the
processor to cause the system to weight the one or more
reduced resolution probability values comprise instructions
to, based on a determination that a reduced resolution
probability value is more likely to correspond to a location
in the subsurface image that includes a part of a geological
feature than a location in the subsurface image that does not
include a part of a geological feature, increasing the reduced
resolution probability value, and based on a determination
that a reduced resolution probability value is less likely to
correspond to a location in the subsurface image that
includes a part of a geological feature than a location in the
subsurface image that does not include a part of a geological
feature, decreasing the reduced resolution probability value.

Embodiment 18: the system of one or more of embodi-
ments 15-17, wherein the geological feature is at least one
of a fracture and a geological fault.
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Embodiment 19: the system of one or more of embodi-
ments 15-18, further comprising instructions executable by
the processor to cause the system to train the trained
generator neural network using a generative adversarial
network.

Embodiment 20: the system of embodiment 19, wherein
the instructions executable by the processor to cause the
system to train the trained generator neural network using
the generative adversarial network comprise instructions to
input batches of synthetic geological feature data into the
generative adversarial network.

What is claimed is:

1. A method comprising:

detecting, by a seismic sensor, seismic waves propagated

through a subsurface formation;

generating a subsurface image based on the detected

seismic waves;

converting, using a geological feature detection neural

network, pixels of the subsurface image into probabil-
ity values, wherein a probability value defines a like-
lihood of a geological feature occurring at a corre-
sponding location of a pixel in the subsurface
formation;

reducing a resolution of the probability values of the

subsurface image to create reduced resolution probabil-
ity values of the subsurface image;

modifying, using distributed weighting factors, one or

more of the reduced resolution probability values based
on the likelihood of the geological feature occurring at
the corresponding location of the pixel in the subsur-
face formation to generate weighted reduced resolution
probability values;

inputting the weighted reduced resolution probability

values into a trained generator neural network to gen-
erate increased resolution probability values of the
subsurface image; and

determining a position of the geological feature in the

subsurface formation based on the increased resolution
probability values of the subsurface image.

2. The method of claim 1, wherein reducing the resolution
of the probability values comprises downsampling of the
probability values of the subsurface image.

3. The method of claim 1, wherein modifying the one or
more of the reduced resolution probability values comprises:

based on a determination that a reduced resolution prob-

ability value is more likely to correspond to a location
in the subsurface image that includes a part of the
geological feature than a location in the subsurface
image that does not include the part of the geological
feature, increasing the reduced resolution probability
value; and

based on a determination that a reduced resolution prob-

ability value is less likely to correspond to the location
in the subsurface image that includes the part of the
geological feature than the location in the subsurface
image that does not include the part of the geological
feature, decreasing the reduced resolution probability
value.

4. The method of claim 1, wherein the geological feature
is at least one of a fracture and a geological fault.

5. The method of claim 1, further comprising training the
trained generator neural network using a generative adver-
sarial network.

6. The method of claim 5, wherein training the trained
generator neural network using the generative adversarial
network comprises inputting batches of synthetic geological
feature data into the generative adversarial network.
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7. The method of claim 1, further comprising modifying
a hydrocarbon recovery operation in a borehole formed in
the subsurface formation based on the position of the
geological feature.

8. A non-transitory, machine-readable medium having
program code stored thereon that is executable by a
machine, the program code comprising instructions to:

receive, from a seismic sensor, seismic waves propagated

through a subsurface formation;

generate a subsurface image based on the received seis-

mic waves;
convert, using a geological feature detection neural net-
work, pixels of the subsurface image into probability
values, wherein a probability value defines a likelihood
of a geological feature occurring at a corresponding
location of a pixel in the subsurface formation;

reduce a resolution of the probability values of the sub-
surface image to create reduced resolution probability
values of the subsurface image;

modify, using distributed weighting factors, one or more

of the reduced resolution probability values based on
the likelihood of the geological feature occurring at the
corresponding location of the pixel in the subsurface
formation to generate weighted reduced resolution
probability values;

input the weighted reduced resolution probability values

into a trained generator neural network to generate
increased resolution probability values of the subsur-
face image; and

determine a position of the geological feature in the

subsurface formation based on the increased resolution
probability values of the subsurface image.

9. The non-transitory, machine-readable medium of claim
8, wherein the instructions to reduce the resolution of the
probability values comprise instructions to downsample the
probability values of the subsurface image.

10. The non-transitory, machine-readable medium of
claim 8, wherein the instructions to modify the one or more
of the reduced resolution probability values comprise
instructions to:

based on a determination that a reduced resolution prob-

ability value is more likely to correspond to a location
in the subsurface image that includes a part of the
geological feature than a location in the subsurface
image that does not include the part of the geological
feature, increasing the reduced resolution probability
value; and

based on a determination that a reduced resolution prob-

ability value is less likely to correspond to the location
in the subsurface image that includes the part of the
geological feature than the location in the subsurface
image that does not include the part of the geological
feature, decreasing the reduced resolution probability
value.

11. The non-transitory, machine-readable medium of
claim 8, wherein the geological feature is at least one of a
fracture and a geological fault.

12. The non-transitory, machine-readable medium of
claim 8, wherein the program code further comprises
instructions to train the trained generator neural network
using a generative adversarial network.

13. The non-transitory, machine-readable medium of
claim 12, wherein the instructions to train the trained gen-
erator neural network using the generative adversarial net-
work comprise instructions to input batches of synthetic
geological feature data into the generative adversarial net-
work.
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14. The non-transitory, machine-readable medium of
claim 8, wherein the program code further comprises
instructions to modify a hydrocarbon recovery operation in
a borehole formed in the subsurface formation based on the
position of the geological feature.

15. A system comprising:

a seismic sensor to detect seismic waves propagated

through a subsurface formation;

a processor; and

a machine-readable medium having instructions stored

thereon that are executable by the processor to cause

the system to,

generate a subsurface image based on the detected
seismic waves;

convert, using a geological feature detection neural
network, pixels of the subsurface image into prob-
ability values, wherein a probability value defines a
likelihood of a geological feature occurring at a
corresponding location of a pixel in the subsurface
formation;

reduce a resolution of the probability values of the
subsurface image to create reduced resolution prob-
ability values of the subsurface image;

modify, using distributed weighting factors, one or
more of the reduced resolution probability values
based on the likelihood of the geological feature
occurring at the corresponding location of the pixel
in the subsurface formation to generate weighted
reduced resolution probability values;

input the weighted reduced resolution probability val-
ues into a trained generator neural network to gen-
erate increased resolution probability values of the
subsurface image; and

determine a position of the geological feature in the
subsurface formation based on the increased resolu-
tion probability values of the subsurface image.

16. The system of claim 15, wherein the instructions
executable by the processor to cause the system to reduce the
resolution of the probability values comprise instructions to
downsample the probability values of the subsurface image.

17. The system of claim 15, wherein the instructions
executable by the processor to cause the system to modify
the one or more of the reduced resolution probability values
comprise instructions to:

based on a determination that a reduced resolution prob-

ability value is more likely to correspond to a location
in the subsurface image that includes a part of the
geological feature than a location in the subsurface
image that does not include the part of the geological
feature, increasing the reduced resolution probability
value; and

based on a determination that a reduced resolution prob-

ability value is less likely to correspond to the location
in the subsurface image that includes the part of the
geological feature than the location in the subsurface
image that does not include the part of the geological
feature, decreasing the reduced resolution probability
value.

18. The system of claim 15, wherein the geological
feature is at least one of a fracture and a geological fault.

19. The system of claim 15, further comprising instruc-
tions executable by the processor to cause the system to train
the trained generator neural network using a generative
adversarial network.

20. The system of claim 19, wherein the instructions
executable by the processor to cause the system to train the
trained generator neural network using the generative adver-
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sarial network comprise instructions to input batches of
synthetic geological feature data into the generative adver-
sarial network.
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