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FREQUENCY-DEPENDENT MACHINE
LEARNING MODEL IN SEISMIC
INTERPRETATION

CROSS REFERENCE TO RELATED
APPLICATION

This claims priority to U.S. Ser. No. 63/317,825, titled
“Frequency-Dependent Machine Learning Model in Seismic
Interpretation” and filed Mar. 8, 2022, the entirety of which
is incorporated herein by reference.

TECHNICAL FIELD

The present disclosure relates generally to wellbore
operations and, more particularly (although not necessarily
exclusively), to machine-learning models used in interpret-
ing seismic data.

BACKGROUND

Interpreting 3D seismic data can assist with understanding
certain subterranean features, such as reservoir compartmen-
talization analysis and drilling hazards. Interpreting 3D
seismic data for identifying and interpreting faults can be
time-consuming and can be biased by the level of expertise
exhibited by a user. Deep learning techniques can be suc-
cessful in automating fault predictions from seismic data.
But, limited resolution of fault probability and the presence
of false-positive faults can pose an obstacle to the accurate
identification of geologically plausible faults.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional view of an environment for
determining seismic data and predicting subterranean fea-
ture locations according to one example of the present
disclosure.

FIG. 2 is a block diagram of a computing device for
training frequency-dependent machine-learning models and
producing filtered subterranean feature probability maps
according to one example of the present disclosure.

FIG. 3 is a flowchart of a process for training frequency-
dependent machine learning models and determining filtered
subterranean feature probability maps according to one
example of the present disclosure.

FIG. 4 is a graph that represents an example of field
seismic data according to one example of the present dis-
closure.

FIG. 5 is a series of graphs that depict an example of a
frequency-dependent training data set according to one
example of the present disclosure.

FIG. 6 is a graph that depicts frequency spectral data for
a frequency-dependent training data set according to one
example of the present disclosure.

DETAILED DESCRIPTION

Certain aspects and examples of the present disclosure
relate to implementing a frequency-dependent machine-
learning (ML) model in seismic interpretation with uncer-
tainty analysis. Performing a structure-oriented filter on
synthetic seismic data can improve quality of ML model
training data. Applying spectral decomposition to pre-pro-
cessed training data can create several sets of frequency-
dependent data. The frequency-dependent data can train
multi-channel, multi-scale convolutional neural networks to
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become frequency-dependent, ML models. The frequency-
dependent ML, models can predict subterranean feature
probability maps. Subterranean features can include geo-
logic faults, subterranean channels, tunnels, etc.

In some examples, an aleatoric uncertainty analysis can
help analyze areas where a false-positive fault may exist and
can help identify low probability areas. The aleatoric uncer-
tainty analysis can be applied to geologic fault probability
maps to filter out low-probability faults and generate a
high-fidelity fault probability map. Aleatoric uncertainty can
include a form of uncertainty that can arise due to an
unpredictable, random nature of a physical system under
study. Due to the random nature of aleatoric uncertainty,
quantifying the aleatoric uncertainty of a system can include
statistical or probabilistic approaches. Aleatoric uncertainty
may not be reduced and instead may be identified and
quantified.

In some examples, a structure filter can be applied to ML
training data that in some examples can include an opti-
mized hyperparameter search workflow in programming
language environments such as Python. Spectral decompo-
sition can be applied to the ML training data to train several
frequency-dependent ML models. Aleatoric uncertainty can
be determined from a subterranean feature probability result
and an uncertainty map can be produced. The uncertainty
map can filter out any low-probability subterranean features
and false-positive subterranean features to create high-fidel-
ity subterranean feature probability maps.

Some examples of the present example can improve
accuracy of ML fault prediction tools used to delineate
major fault planes and decrease small noisy faults which can
prevent correct interpretation of seismic data. The aleatoric
uncertainty analysis can provide a systematic tool to analyze
the result of subterranean feature predictions.

Iustrative examples are given to introduce the reader to
the general subject matter discussed herein and are not
intended to limit the scope of the disclosed concepts. The
following sections describe various additional features and
examples with reference to the drawings in which like
numerals indicate like elements, and directional descriptions
are used to describe the illustrative aspects, but, like the
illustrative aspects, should not be used to limit the present
disclosure.

FIG. 1 is a cross-sectional view of an environment 100 for
determining seismic data and predicting subterranean fea-
ture locations according to one example of the present
disclosure. The environment 100 includes a subterranean
formation 102 formed from various earth strata 104a-%. The
subterranean formation 102 includes various geological
bodies, such as a salt body 108 that includes salt, an oil body
110 that includes oil, a gas body 112 that includes gas, and
a water body 114 that includes water. In some examples,
subterranean formation 102 may include more, fewer, or
other types of strata and geological bodies. Additionally, the
subterranean formation 102 can include a subterranean
feature 115 that can represent a discontinuity in the subter-
ranean formation 102. In some cases, the subterranean
feature 115 can represent a discontinuity with respect to the
earth strata 104 and can separate two or more geological
bodies. As illustrated, the subterranean formation 102
includes one subterranean feature 115, but the subterranean
formation 102 can include other suitable amounts of sub-
terranean features 115. Examples of subterranean features
115 can include geological faults, joints, disconformities,
channels, tunnels, etc.

At least one portion of the environment 100 can be
positioned at the surface 120 of the subterrancan formation
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102 for detecting geological bodies or otherwise character-
izing subterranean features 115 in the subterranean forma-
tion 102. For example, the environment 100 can include
signal source 116 and sensors 118a-d, which, for example,
can be used to detect and receive seismic data about the
subterranean formation 102. Examples of the signal source
116 can include a vibration unit, an explosive charge, or
other suitable type of signal source 116, and examples of the
sensors 118a-d can include geophones, hydrophones, or
other suitable types of sensors 118. The signal source 116
can emit one or more waves into a target area of the
subterranean formation 102. In the example shown in FIG.
1, the waves are represented by black arrows and the target
area is the portion of the subterranean formation 102 posi-
tioned below sensors 118a-d. The waves can reflect off the
geological bodies, the subterranean feature 115, or other
suitable components of the subterranean formation 102 and
return to the sensors 118. The sensors 118 can detect the
reflected waves and provide corresponding seismic data to a
computing device 122, which may be included in the envi-
ronment 100.

As one particular example, the signal source 116 can
include a vibration unit and the sensors 118 can include
geophones. The vibration unit can emit vibrations that
propagate through the target area of the subterranean for-
mation 102, reflect off the geological bodies, the subterra-
nean feature 115, or other suitable components, and return to
the geophones. The geophones can receive the reflected
vibrations and generate seismic data based on the reflected
vibrations. The geophones can then transmit their respective
seismic data to the computing device 122. The computing
device 122 can include trained ML models 124 that can
receive frequency-dependent training data as input and
provide subterranean feature probability maps as an output.
The computing device 122 may then determine filtered
subterranean feature probability maps using aleatoric uncer-
tainty analysis.

While FIG. 1 depicts an example of environment 100 that
includes certain components (e.g., the signal source 116, the
sensors 118a-d, and the computing device 122), other
examples may include more, fewer, or different components.
For instance, different examples may involve the computing
device 122 receiving seismic data from a remote computing
device via a network, such as the Internet. The computing
device 122 can receive the seismic data from the sensors
118a-d. And, in some examples, the computing device 122
may be positioned offsite, rather than proximate to the target
area of the subterranean formation 102.

FIG. 2 is a block diagram of a computing device 122 for
training frequency-dependent ML, models and producing
filtered subterranean feature probability maps 220 according
to one example of the present disclosure. The components in
FIG. 2, such as a processor 202, a memory 204, bus 206, and
the like, may be integrated into a single structure such as
within a single housing of the computing device 122.
Alternatively, the components shown in FIG. 2 can be
distributed with respect to one another and in electrical
communication with each other.

The computing device 122 includes the processor 202
communicatively coupled to the memory 204 by the bus
206. The processor 202 can include one processor or mul-
tiple processors. Non-limiting examples of the processor
202 include a Field-Programmable Gate Array (FPGA), an
application-specific integrated circuit (ASIC), a micropro-
cessor, or any combination of these. The processor 202 can
execute instructions 208 stored in the memory 204 to
perform operations. In some examples, the instructions 208
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can include processor-specific instructions generated by a
compiler or an interpreter from code written in any suitable
computer-programming language, such as C, C++, C#, or
Java.

The memory 204 can include one memory device or
multiple memory devices. The memory 204 can be non-
volatile and may include any type of memory device that
retains stored information when powered off. Non-limiting
examples of the memory 204 include electrically erasable
and programmable read-only memory (EEPROM), flash
memory, or any other type of non-volatile memory. At least
some of the memory 204 can include a non-transitory
computer-readable medium from which the processor 202
can read the instructions 208. A non-transitory computer-
readable medium can include electronic, optical, magnetic,
or other storage devices capable of providing the processor
202 with the instructions 208 or other program code. Non-
limiting examples of a non-transitory computer-readable
medium include magnetic disk(s), memory chip(s), random
access memory (RAM), an ASIC, a configured processor, or
any other medium from which a computer processor can
read the instructions.

In some examples, the memory 204 can further include
field seismic data 210 that can be measured from a subter-
ranean formation 102. The processor 202 may convert the
field seismic data 210 using a structure-oriented filter 222
into pre-processed training data 212. The pre-processed
training data 212 can be used to make frequency-dependent
training data 213. The memory may also store frequency-
dependent ML, models 214. The processor 202 can train the
frequency-dependent ML models 214 using the frequency-
dependent training data 213. The trained frequency-depen-
dent ML models 214 can be applied to seismic data 215 to
generate, for example, subterranean feature probability
maps 216. The processor 202 can produce a filtered subter-
ranean feature probability map 220 by applying an aleatoric
uncertainty analysis 218 to the subterranean feature prob-
ability maps 216 to produce an uncertainty map 219. Addi-
tionally, in some examples, the processor 202 can create a
subterranean feature extraction map 224 from the filtered
subterranean feature probability map 220.

In some examples, the computing device 122 can imple-
ment a process 300 shown in FIG. 3 for effectuating some
aspects of the present disclosure. Other examples can
involve more operations, fewer operations, different opera-
tions, or a different order of operations than shown in FIG.
3. The operations of FIG. 3 are described below with
reference to the components shown in FIG. 2.

FIG. 3 is a flowchart of a process 300 for training
frequency-dependent ML, models 214 and determining fil-
tered subterranean feature probability maps 220 according to
one example of the present disclosure. The process 300 may
be performed by software, firmware, hardware or a combi-
nation thereof. At block 302, a processor 202 applies spec-
tral decomposition to pre-processed training data 212 to
generate frequency-dependent training data 213 of two or
more frequencies. In some examples, the processor 202
performs a structure-oriented filter 222 on field seismic data
210 to produce the pre-processed training data 212. An
example of the field seismic data 210 is shown in FIG. 4. The
field seismic data 210 can be measured in a subterranean
formation 102, as described above in the description of FIG.
1. The field seismic data can include subterranean features.
Examples of subterranean features can include geologic
faults, channels, tunnels, etc.

In some examples, the structure-oriented filter 222 can
include moving filter windows. In some examples, the
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processor 202 can evaluate sizes of the filter windows and
select an optimal combination of xyz coordinate limits on
the window size. An optimal window size can preserve
discontinuities and reduce noise in the field seismic data
210.

Applying spectral decomposition to the pre-processed
training data 212 can result in multiple sets of frequency-
dependent training data 213. An example of a set of fre-
quency dependent training data is shown in FIG. 5. Each set
of frequency-dependent training data can be used to train a
ML model as described in block 304.

At block 304, the processor 202 trains two or more
frequency-dependent ML models 214 using the frequency-
dependent training data 213. Each of the frequency-depen-
dent ML models 214 can be associated with a separate
frequency. For example, each of the four frequency-depen-
dent data sets shown in FIG. 5 can train a separate ML
model. In some examples, the frequency-dependent ML
models 214 can include convolutional neural networks.
Convolutional neural networks can be types of artificial
neural networks used in image processing. In some
examples, the neural networks can be multi-channel, multi-
scale convolutional neural networks. The trained frequency-
dependent ML, models 214 can predict subterranean feature
probability maps 216 as described in block 306.

In some examples, training the two or more frequency-
dependent ML, models includes applying a bootstrapping
model. The bootstrapping model can include randomly
selecting partial training data from the frequency-dependent
training data and measuring a probability distribution func-
tion that can quantify uncertainty in a ML model. In some
examples, the two or more frequency-dependent ML models
include Bayesian Neural Networks.

At block 306, the processor 202 applies the two or more
frequency-dependent ML models 214 to seismic data 215 to
generate two or more subterranean feature probability maps
216. The seismic data 215, like the field seismic data 210,
can be measured in the subterranean formation 102, as
described above in the description for FIG. 1. But, the
seismic data 215 can be measured in a different subterranean
formation than the subterranean formation 102 used to
measure the field seismic data 210. The seismic data 215 can
be measured in a different area of the same subterranean
formation as the subterranean formation 102 used to mea-
sure the field seismic data 210. The subterranean feature
probability maps 216 can predict a range of subterranean
features including some low-probability subterranean fea-
tures that can lead to false positive predictions of locations
of subterranean features.

At block 308, the processor 202 performs an aleatoric
uncertainty analysis 218 on the two or more subterranean
feature probability maps 216 to create an uncertainty map
219 for aleatoric uncertainty. The aleatoric uncertainty
analysis 218 can identify areas of low-probability subterra-
nean features and analyze these areas. In some examples,
performing the aleatoric uncertainty analysis 218 includes
selecting one of the two or more subterranean feature
probability maps 216. An algorithm can be applied to
quantify aleatoric uncertainty in the selected subterranean
feature probability map and the uncertainty map 219 for
aleatoric uncertainty can be created.

At block 310, the processor 202 generates a filtered
subterranean feature probability map 220 based on the
uncertainty map 219 for aleatoric uncertainty. The uncer-
tainty map 219 can be applied to filter out high uncertainty
areas from the selected subterranean feature probability map
216. In some examples, the filtered subterranean feature
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6

probability map 220 can be a factor when controlling a
direction of a drill used during a wellbore drilling operation.
In some examples, a subterranean feature extraction map
224 can be generated based on the filtered subterranean
feature probability map 220.

FIG. 4 shows a graph 400 that represents an example of
field seismic data (e.g., field seismic data 210 described in
FIG. 2). The field seismic data can be measured in a
subterranean formation 102, as described above for FIG. 1.
The field seismic data can include subterranean features that
are of interest for wellbore operations. A structure-oriented
filter 222 can be applied to the field seismic data to produce
pre-processed training data 212. A processor 202 can apply
spectral decomposition to the field seismic data to produce
a set of frequency-dependent training data 213.

FIG. 5 is a series of graphs that depict an example of a
frequency-dependent training data 213 set. The graphs
depicted in FIG. 5 represent outputs after a processor 202
applied spectral decomposition to the field seismic data 210
of FIG. 4. The series of graphs include frequency data for 5
Hz 502, 13 Hz 504, 22 Hz 506, and 31 Hz 508. As illustrated
by FIG. 5, the field seismic data 210 can be decomposed into
four frequency-dependent data maps. In other examples, the
number of maps can be less than or greater than four. In the
example illustrated by FIG. 5, there is about an 8 Hz
incremental difference separating successive maps. In other
examples, the incremental difference can be less than or
greater than 8 Hz. Each of the frequency-dependent training
data maps can be used to train a frequency-dependent ML
model.

FIG. 6 is a graph 602 that depicts frequency spectral data
for a frequency-dependent training data 213 set. The graph
602 illustrated in FIG. 6 was produced from the frequency-
dependent training data illustrated in FIG. 5. The graph 602
shows that in this example, full band seismic data can
exhibit a peak in spectral magnitude at 10 Hz. The peak in
spectral magnitude can be used to help choose a frequency
of a selected subterranean feature probability map 216 for
applying an aleatoric uncertainty analysis 218.

In some aspects, methods, systems, and non-transitory
computer-readable media for frequency-dependent ML
models in seismic interpretation are provided according to
one or more of the following examples:

As used below, any reference to a series of examples is to
be understood as a reference to each of those examples
disjunctively (e.g., “Examples 1-4” is to be understood as
“Examples 1, 2, 3, or 47).

Example 1 is a method comprising: applying spectral
decomposition to pre-processed training data to generate
frequency-dependent training data of two or more frequen-
cies; training two or more machine-learning (ML) models
using the frequency-dependent training data; subsequent to
training the two or more ML models, applying the two or
more ML models to seismic data to generate two or more
subterranean feature probability maps; performing an analy-
sis of aleatoric uncertainty on the two or more subterranean
feature probability maps to create an uncertainty map for
aleatoric uncertainty; and generating a filtered subterranean
feature probability map based on the uncertainty map for
aleatoric uncertainty.

Example 2 is the method of example 1, wherein perform-
ing the analysis of aleatoric uncertainty comprises: selecting
one of the two or more subterranean feature probability
maps; applying an algorithm to quantify aleatoric uncer-
tainty in the selected subterranean feature probability map;
and creating the uncertainty map for aleatoric uncertainty.
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Example 3 is the method of example 2, wherein gener-
ating the filtered subterranean feature probability map com-
prises applying the uncertainty map to filter out high uncer-
tainty areas from the selected subterranean feature
probability map.

Example 4 is the method of examples 1-3, further com-
prising performing a structure-oriented filter on field seismic
data to produce the pre-processed training data.

Example 5 is the method of example 4, wherein perform-
ing the structure-oriented filter comprises optimizing a size
of a moving filter window to preserve discontinuities and
reduce noise in the field seismic data.

Example 6 is the method of examples 1-5, wherein the
two or more subterranean feature probability maps comprise
two or more geologic fault probability maps.

Example 7 is the method of examples 1-6, wherein
training the two or more ML models comprises applying a
bootstrapping model comprising: randomly selecting partial
training data from the frequency-dependent training data;
and measuring a probability distribution function that can
quantify uncertainty in the ML model.

Example 8 is a system comprising: a processor; and a
non-transitory computer-readable medium comprising
instructions that are executable by the processor for causing
the processor to perform operations comprising: applying
spectral decomposition to pre-processed training data to
generate frequency-dependent training data of two or more
frequencies; training two or more machine-learning (ML)
models using the frequency-dependent training data; subse-
quent to training the two or more ML models, applying the
two or more ML models to seismic data to generate two or
more subterranean feature probability maps; performing an
analysis of aleatoric uncertainty on the two or more subter-
ranean feature probability maps to create an uncertainty map
for aleatoric uncertainty; and generating a filtered subterra-
nean feature probability map based on the uncertainty map
for aleatoric uncertainty.

Example 9 is the system of example 8, wherein perform-
ing the analysis of aleatoric uncertainty comprises: selecting
one of the two or more subterranean feature probability
maps; applying an algorithm to quantify aleatoric uncer-
tainty in the selected subterranean feature probability map;
and creating the uncertainty map for aleatoric uncertainty.

Example 10 is the system of example 9, wherein gener-
ating the filtered subterranean feature probability map com-
prises applying the uncertainty map to filter out high uncer-
tainty areas from the selected subterranean feature
probability map.

Example 11 is the system of examples 8-10, wherein the
operations further comprise performing a structure-oriented
filter on field seismic data to produce the pre-processed
training data.

Example 12 is the system of example 11, wherein per-
forming the structure-oriented filter comprises optimizing a
size of a moving filter window to preserve discontinuities
and reduce noise in the field seismic data.

Example 13 is the system of examples 8-12, wherein the
two or more subterranean feature probability maps comprise
two or more geologic fault probability maps.

Example 14 is the system of examples 8-13, wherein
training the two or more ML models comprises applying a
bootstrapping model comprising: randomly selecting partial
training data from the frequency-dependent training data;
and measuring a probability distribution function that can be
used to quantify uncertainty in the ML model.

Example 15 is a non-transitory computer-readable
medium comprising instructions that are executable by a
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processing device for causing the processing device to
perform operations comprising: applying spectral decompo-
sition to pre-processed training data to generate frequency-
dependent training data of two or more frequencies; training
two or more machine-learning (ML) models using the
frequency-dependent training data; subsequent to training
the two or more ML models, applying the two or more ML
models to seismic data to generate two or more subterranean
feature probability maps; performing an analysis of aleatoric
uncertainty on the two or more subterranean feature prob-
ability maps to create an uncertainty map for aleatoric
uncertainty; and generating a filtered subterranean feature
probability map based on the uncertainty map for aleatoric
uncertainty.

Example 16 is the non-transitory computer-readable
medium of example 15, wherein performing the analysis of
aleatoric uncertainty comprises: selecting one of the two or
more subterranean feature probability maps; applying an
algorithm to quantify aleatoric uncertainty in the selected
subterranean feature probability map; and creating the
uncertainty map for aleatoric uncertainty.

Example 17 is the non-transitory computer-readable
medium of example 16, wherein generating the filtered
subterranean feature probability map comprises applying the
uncertainty map to filter out high uncertainty areas from the
selected subterranean feature probability map.

Example 18 is the non-transitory computer-readable
medium of examples 15-17, wherein the operations further
comprise performing a structure-oriented filter on field seis-
mic data to produce the pre-processed training data.

Example 19 is the non-transitory computer-readable
medium of example 18, wherein performing the structure-
oriented filter further comprises optimizing a size of a
moving filter window to preserve discontinuities and reduce
noise in the field seismic data.

Example 20 is the non-transitory computer-readable
medium of examples 15-19, wherein the two or more
subterranean feature probability maps comprise two or more
geologic fault probability maps.

The foregoing description of certain examples, including
illustrated examples, has been presented only for the pur-
pose of illustration and description and is not intended to be
exhaustive or to limit the disclosure to the precise forms
disclosed. Numerous modifications, adaptations, and uses
thereof will be apparent to those skilled in the art without
departing from the scope of the disclosure.

What is claimed is:

1. A method comprising:

applying spectral decomposition to pre-processed training

data to generate frequency-dependent training data of
two or more frequencies;
training two or more machine-learning (ML) models
using the frequency-dependent training data, wherein
each ML model of the two or more ML models com-
prises a plurality of layers, wherein each ML model of
the two or more ML models is trained using frequency-
dependent training data of a different frequency than a
frequency of frequency-dependent training data that is
used to train a different ML model of the two or more
ML models;

subsequent to training the two or more ML models,
applying the two or more ML models to seismic data to
generate two or more subterranean feature probability
maps;

performing an analysis of aleatoric uncertainty on the two

or more subterranean feature probability maps to create
an uncertainty map for aleatoric uncertainty; and
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generating a filtered subterranean feature probability map

based on the uncertainty map for aleatoric uncertainty.

2. The method of claim 1, wherein performing the analy-
sis of aleatoric uncertainty comprises:

selecting one of the two or more subterranean feature

probability maps;

applying an algorithm to quantify aleatoric uncertainty in

the selected subterranean feature probability map; and
creating the uncertainty map for aleatoric uncertainty.

3. The method of claim 2, wherein generating the filtered
subterranean feature probability map comprises applying the
uncertainty map to filter out high uncertainty areas from the
selected subterranean feature probability map.

4. The method of claim 1, further comprising performing
a structure-oriented filter on field seismic data to produce the
pre-processed training data.

5. The method of claim 4, wherein performing the struc-
ture-oriented filter comprises optimizing a size of a moving
filter window to preserve geologic discontinuities and
reduce noise in the field seismic data.

6. The method of claim 1, wherein the two or more
subterranean feature probability maps comprise two or more
geologic fault probability maps.

7. The method of claim 1, wherein training the two or
more ML models comprises:

randomly selecting partial training data from the fre-

quency-dependent training data; and

measuring, from the partial training data, a probability

distribution function that can quantify uncertainty in
the ML model.

8. A system comprising:

a processor; and

a non-transitory computer-readable medium comprising

instructions that are executable by the processor for

causing the processor to perform operations compris-

ing:

applying spectral decomposition to pre-processed train-
ing data to generate frequency-dependent training
data of two or more frequencies;

training two or more machine-learning (ML) models
using the frequency-dependent training data in
which each ML model of the two or more ML
models is trained using frequency-dependent train-
ing data of a different frequency than a frequency of
frequency-dependent training data that is used to
train a different ML model of the two or more ML
models, wherein each ML model of the two or more
ML models comprises a plurality of layers;

subsequent to training the two or more ML models,
applying the two or more ML models to seismic data
to generate two or more subterranean feature prob-
ability maps;

performing an analysis of aleatoric uncertainty on the
two or more subterranean feature probability maps to
create an uncertainty map for aleatoric uncertainty;
and

generating a filtered subterranean feature probability
map based on the uncertainty map for aleatoric
uncertainty.

9. The system of claim 8, wherein performing the analysis
of aleatoric uncertainty comprises:

selecting one of the two or more subterranean feature

probability maps;

applying an algorithm to quantify aleatoric uncertainty in

the selected subterranean feature probability map; and
creating the uncertainty map for aleatoric uncertainty.
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10. The system of claim 9, wherein generating the filtered
subterranean feature probability map comprises applying the
uncertainty map to filter out high uncertainty areas from the
selected subterranean feature probability map.

11. The system of claim 8, wherein the operations further
comprise performing a structure-oriented filter on field seis-
mic data to produce the pre-processed training data.

12. The system of claim 11, wherein performing the
structure-oriented filter comprises optimizing a size of a
moving filter window to preserve geologic discontinuities
and reduce noise in the field seismic data.

13. The system of claim 8, wherein the two or more
subterranean feature probability maps comprise two or more
geologic fault probability maps.

14. The system of claim 8, wherein training the two or
more ML models comprises:

randomly selecting partial training data from the fre-

quency-dependent training data; and

measuring, using the partial training data, a probability

distribution function that can be used to quantify uncer-
tainty in the ML model.

15. A non-transitory computer-readable medium compris-
ing instructions that are executable by a processing device
for causing the processing device to perform operations
comprising:

applying spectral decomposition to pre-processed training

data to generate frequency-dependent training data of
two or more frequencies;

training two or more machine-learning (ML) models

using the frequency-dependent training data in which
each ML model of the two or more ML models is
trained using frequency-dependent training data of a
different frequency than a frequency of frequency-
dependent training data that is used to train a different
ML model of the two or more ML models, wherein
each ML model of the two or more ML models com-
prises a plurality of layers;

subsequent to training the two or more ML models,

applying the two or more ML models to seismic data to
generate two or more subterranean feature probability
maps;

performing an analysis of aleatoric uncertainty on the two

or more subterranean feature probability maps to create

an uncertainty map for aleatoric uncertainty; and
generating a filtered subterranean feature probability map

based on the uncertainty map for aleatoric uncertainty.

16. The non-transitory computer-readable medium of
claim 15, wherein performing the analysis of aleatoric
uncertainty comprises:

selecting one of the two or more subterranean feature

probability maps;

applying an algorithm to quantify aleatoric uncertainty in

the selected subterranean feature probability map; and
creating the uncertainty map for aleatoric uncertainty.

17. The non-transitory computer-readable medium of
claim 16, wherein generating the filtered subterranean fea-
ture probability map comprises applying the uncertainty
map to filter out high uncertainty areas from the selected
subterranean feature probability map.

18. The non-transitory computer-readable medium of
claim 15, wherein the operations further comprise perform-
ing a structure-oriented filter on field seismic data to produce
the pre-processed training data.

19. The non-transitory computer-readable medium of
claim 18, wherein performing the structure-oriented filter
further comprises optimizing a size of a moving filter
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window to preserve geologic discontinuities and reduce
noise in the field seismic data.

20. The non-transitory computer-readable medium of
claim 15, wherein the two or more subterranean feature
probability maps comprise two or more geologic fault 5
probability maps.



